Patents by Inventor David Neff

David Neff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9166252
    Abstract: A surface-controlled, lithium ion-exchanging battery device comprising: (a) A positive electrode (cathode) comprising a first functional material having a first lithium-capturing or lithium-storing surface; (b) A negative electrode (anode) comprising a second functional material having a second lithium-capturing or lithium-storing surface; (c) A porous separator disposed between the two electrodes, and (d) A lithium-containing electrolyte (preferably liquid or gel electrolyte) in physical contact with the two electrodes; wherein at least one of the two electrodes contains therein a lithium source (e.g., lithium foil, lithium powder, stabilized lithium particles, etc) prior to the first charge or the first discharge cycle of the battery device. This new generation of energy storage device exhibits the best properties of both the lithium ion battery and the supercapacitor.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: October 20, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, ChenGuang Liu, David Neff, Bor Z. Jang
  • Patent number: 9053870
    Abstract: A supercapacitor comprising a two electrodes, a porous separator disposed between the two electrodes, and an ionic liquid electrolyte in physical contact with the two electrodes, wherein at least one of the two electrodes comprises a meso-porous structure being formed of a plurality of nano graphene platelets and multiple pores having a pore size in the range of 2 nm and 25 nm, wherein the graphene platelets are not spacer-modified or surface-modified platelets. Preferably, the graphene platelets are curved, not flat-shaped. The pores are accessible to ionic liquid molecules, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance and high energy density.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: June 9, 2015
    Inventors: Zhenning Yu, David Neff, Chen-guang Liu, Bor Z. Jang, Aruna Zhamu
  • Patent number: 8935774
    Abstract: Accessory device authentication techniques are described. In one or more embodiments, connection of an accessory device to a host computing device is detected. Responsive to the detection, an authentication sequence may occur to verify an identity and/or capabilities of the accessory device. Upon successful authentication of the accessory device, the host device may authorize the accessory device for power exchange interactions with the host device. The host device may then draw supplemental power from a power source associated with the authorized accessory device, such as a battery or power adapter. The host device may also enable the accessory device to obtain and use power supplied by the host device in some scenarios. Power exchange between a host device and an authorized accessory may be managed in accordance with capabilities of the accessory device that are identified during authentication.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: January 13, 2015
    Assignee: Microsoft Corporation
    Inventors: Jim Tom Belesiu, Gene Robert Obie, James Charles Marshall, Robert D. Young, Nathan C. Sherman, Edward C. Giaimo, III, David Neff, Jose R. Sousa
  • Patent number: 8900755
    Abstract: An electrochemical energy storage device, lithium super-battery, comprising a positive electrode, a negative electrode, a porous separator disposed between the two electrodes, and a lithium-containing electrolyte in physical contact with the two electrodes, wherein the positive electrode comprises a disordered carbon material having a functional group that reversibly reacts with a lithium atom or ion. The disordered carbon material is selected from a soft carbon, hard carbon, polymeric carbon or carbonized resin, meso-phase carbon, coke, carbonized pitch, carbon black, activated carbon, or partially graphitized carbon. In a preferred embodiment, a lithium super-battery having a functionalized disordered carbon cathode and a Li4Ti5O12 anode exhibits a gravimetric energy ˜5-10 times higher than those of conventional supercapacitors and a power density ˜10-30 times higher than those of conventional lithium-ion batteries. This device has the best properties of both the lithium ion battery and the supercapacitor.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: December 2, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Chenguang Liu, Aruna Zhamu, David Neff, Bor Z. Jang
  • Patent number: 8859143
    Abstract: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from (A) non-Li alkali metals; (B) alkaline-earth metals; (C) transition metals; (D) other metals such as aluminum (Al); or (E) a combination thereof; and wherein at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with said electrolyte, and wherein the operation of the battery device does not involve the introduction of oxygen from outside the device and does not involve the formation of a metal oxide, metal sulfide, metal selenide, metal telluride, metal hydroxide, or metal-halogen compound.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: October 14, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, ChenGuang Liu, David Neff, Bor Z. Jang, Zhenning Yu
  • Patent number: 8795899
    Abstract: An electrochemical energy storage device, lithium super-battery, comprising a positive electrode, a negative electrode, a porous separator disposed between the two electrodes, and a lithium-containing electrolyte in physical contact with the two electrodes, wherein the positive electrode comprises a plurality of chemically functionalized nano graphene platelets (f-NGP) or exfoliated graphite having a functional group that reversibly reacts with a lithium atom or ion. In a preferred embodiment, a lithium super-battery having a f-NGP positive electrode and Li4Ti5O12 negative electrode exhibits a gravimetric energy ˜5 times higher than conventional supercapacitors and a power density ˜10 times higher than conventional lithium-ion batteries. This device has the best properties of both the lithium ion battery and the supercapacitor.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: August 5, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Chenguang Liu, Aruna Zhamu, David Neff, Bor Z. Jang
  • Patent number: 8719603
    Abstract: Accessory device authentication techniques are described. In one or more embodiments, connection of an accessory device to a host computing device is detected. Responsive to the detection, an authentication sequence may occur to verify an identity and/or capabilities of the accessory device. Upon successful authentication of the accessory device, the host device may authorize the accessory device for power exchange interactions with the host device. The host device may then draw supplemental power from a power source associated with the authorized accessory device, such as a battery or power adapter. The host device may also enable the accessory device to obtain and use power supplied by the host device in some scenarios. Power exchange between a host device and an authorized accessory may be managed in accordance with capabilities of the accessory device that are identified during authentication.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: May 6, 2014
    Assignee: Microsoft Corporation
    Inventors: Jim Tom Belesiu, Gene Robert Obie, James Charles Marshall, Robert D. Young, Nathan C. Sherman, Edward C. Giaimo, III, David Neff, Jose R. Sousa
  • Publication number: 20130232350
    Abstract: Accessory device authentication techniques are described. In one or more embodiments, connection of an accessory device to a host computing device is detected. Responsive to the detection, an authentication sequence may occur to verify an identity and/or capabilities of the accessory device. Upon successful authentication of the accessory device, the host device may authorize the accessory device for power exchange interactions with the host device. The host device may then draw supplemental power from a power source associated with the authorized accessory device, such as a battery or power adapter. The host device may also enable the accessory device to obtain and use power supplied by the host device in some scenarios. Power exchange between a host device and an authorized accessory may be managed in accordance with capabilities of the accessory device that are identified during authentication.
    Type: Application
    Filed: October 16, 2012
    Publication date: September 5, 2013
    Applicant: MICROSOFT CORPORATION
    Inventors: Jim Tom Belesiu, Gene Robert Obie, James Charles Marshall, Robert D. Young, Nathan C. Sherman, Edward C. Giaimo, III, David Neff, Jose R. Sousa
  • Publication number: 20130232571
    Abstract: Accessory device authentication techniques are described. In one or more embodiments, connection of an accessory device to a host computing device is detected. Responsive to the detection, an authentication sequence may occur to verify an identity and/or capabilities of the accessory device. Upon successful authentication of the accessory device, the host device may authorize the accessory device for power exchange interactions with the host device. The host device may then draw supplemental power from a power source associated with the authorized accessory device, such as a battery or power adapter. The host device may also enable the accessory device to obtain and use power supplied by the host device in some scenarios. Power exchange between a host device and an authorized accessory may be managed in accordance with capabilities of the accessory device that are identified during authentication.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 5, 2013
    Inventors: Jim Tom Belesiu, Gene Robert Obie, James Charles Marshall, Robert D. Young, Nathan C. Sherman, Edward C. Giaimo, III, David Neff, Jose R. Sousa
  • Publication number: 20120171574
    Abstract: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from (A) non-Li alkali metals; (B) alkaline-earth metals; (C) transition metals; (D) other metals such as aluminum (Al); or (E) a combination thereof; and wherein at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with said electrolyte, and wherein the operation of the battery device does not involve the introduction of oxygen from outside the device and does not involve the formation of a metal oxide, metal sulfide, metal selenide, metal telluride, metal hydroxide, or metal-halogen compound.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 5, 2012
    Inventors: Aruna Zhamu, ChenGuang Liu, David Neff, Bor Z. Jang, Zhenning Yu
  • Patent number: 8211209
    Abstract: Apparatuses for controlling a humidity level within an enclosed volume storage device and methods for using same. The apparatus, in one embodiment, comprises a container having outer walls defining an inner volume, at least one of the outer walls, preferably an lid wall, having perforations therein. The apparatus further comprises a composition capable of adsorbing and desorbing water and contained in the inner volume of the container. The composition is hydrated to a hydration level less than about 0.13 mL water per gram of the composition. The methods include a step of hydrating the composition in an apparatus of the invention to a hydration level less than about 0.13 mL water per gram of composition.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 3, 2012
    Inventor: Mark David Neff
  • Publication number: 20120164539
    Abstract: A surface-controlled, lithium ion-exchanging battery device comprising: (a) A positive electrode (cathode) comprising a first functional material having a first lithium-capturing or lithium-storing surface; (b) A negative electrode (anode) comprising a second functional material having a second lithium-capturing or lithium-storing surface; (c) A porous separator disposed between the two electrodes, and (d) A lithium-containing electrolyte (preferably liquid or gel electrolyte) in physical contact with the two electrodes; wherein at least one of the two electrodes contains therein a lithium source (e.g., lithium foil, lithium powder, stabilized lithium particles, etc) prior to the first charge or the first discharge cycle of the battery device. This new generation of energy storage device exhibits the best properties of both the lithium ion battery and the supercapacitor.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Aruna Zhamu, ChenGuang Liu, David Neff, Bor Z. Jang
  • Patent number: 8178036
    Abstract: An impeller for dispersing gas into molten metal includes a rectangular prism body having upper and lower faces and four side walls. The body has an opening extending through the upper and lower faces and defines a hub around the opening on the upper face. The impeller further includes a plurality of elongate grooves extending radially outwardly from the hub.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: May 15, 2012
    Assignee: Pyrotek, Inc.
    Inventors: David Neff, Richard S. Henderson, Lennard D. Lutes, James Grayson
  • Publication number: 20120077080
    Abstract: An electrochemical energy storage device, lithium super-battery, comprising a positive electrode, a negative electrode, a porous separator disposed between the two electrodes, and a lithium-containing electrolyte in physical contact with the two electrodes, wherein the positive electrode comprises a disordered carbon material having a functional group that reversibly reacts with a lithium atom or ion. The disordered carbon material is selected from a soft carbon, hard carbon, polymeric carbon or carbonized resin, meso-phase carbon, coke, carbonized pitch, carbon black, activated carbon, or partially graphitized carbon. In a preferred embodiment, a lithium super-battery having a functionalized disordered carbon cathode and a Li4Ti5O12 anode exhibits a gravimetric energy ˜5-10 times higher than those of conventional supercapacitors and a power density ˜10-30 times higher than those of conventional lithium-ion batteries. This device has the best properties of both the lithium ion battery and the supercapacitor.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Inventors: Chenguang Liu, Aruna Zhamu, David Neff, Bor Z. Jang
  • Publication number: 20120045688
    Abstract: An electrochemical energy storage device, lithium super-battery, comprising a positive electrode, a negative electrode, a porous separator disposed between the two electrodes, and a lithium-containing electrolyte in physical contact with the two electrodes, wherein the positive electrode comprises a plurality of chemically functionalized nano graphene platelets (f-NGP) or exfoliated graphite having a functional group that reversibly reacts with a lithium atom or ion. In a preferred embodiment, a lithium super-battery having a f-NGP positive electrode and Li4Ti5O12 negative electrode exhibits a gravimetric energy ˜5 times higher than conventional supercapacitors and a power density ˜10 times higher than conventional lithium-ion batteries. This device has the best properties of both the lithium ion battery and the supercapacitor.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Inventors: Chenguang Liu, Aruna Zhamu, David Neff, Bor Z. Jang
  • Publication number: 20120026643
    Abstract: A supercapacitor comprising a two electrodes, a porous separator disposed between the two electrodes, and an ionic liquid electrolyte in physical contact with the two electrodes, wherein at least one of the two electrodes comprises a meso-porous structure being formed of a plurality of nano graphene platelets and multiple pores having a pore size in the range of 2 nm and 25 nm, wherein the graphene platelets are not spacer-modified or surface-modified platelets. Preferably, the graphene platelets are curved, not flat-shaped. The pores are accessible to ionic liquid molecules, enabling the formation of large amounts of electric double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance and high energy density.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Inventors: Zhenning Yu, David Neff, Chen-guang Liu, Bor Z. Jang, Aruna Zhamu
  • Patent number: 7973794
    Abstract: A method and system are disclosed for rendering animated graphics on a browser client based upon a stream of runtime data from a manufacturing/process control system. The graphics animation is based upon an animated graphic display object specification and runtime data from a portal server affecting an appearance trait of the animated graphic display object. The client browser receives an animated graphics description from the portal server specifying an animation behavior for an identified graphical display object. The client creates a data exchange connection between an animated display object, corresponding to the animated graphics description, and a source of runtime data from the portal server affecting display of the animated display object. Thereafter, the client applies runtime data received from the source of runtime data to the animated display object to render an animated graphic display object.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: July 5, 2011
    Assignee: Invensys Systems, Inc.
    Inventors: Paul W. Forney, Rashesh Mody, Chau Bich, David Neff, Todd Miller, Kimson Q. Nguyen
  • Publication number: 20110126704
    Abstract: Apparatuses for controlling a humidity level within an enclosed volume storage device and methods for using same. The apparatus, in one embodiment, comprises a container having outer walls defining an inner volume, at least one of the outer walls, preferably an lid wall, having perforations therein. The apparatus further comprises a composition capable of adsorbing and desorbing water and contained in the inner volume of the container. The composition is hydrated to a hydration level less than about 0.13 mL water per gram of the composition. The methods include a step of hydrating the composition in an apparatus of the invention to a hydration level less than about 0.13 mL water per gram of composition.
    Type: Application
    Filed: February 9, 2011
    Publication date: June 2, 2011
    Inventor: Mark David Neff
  • Patent number: 7892327
    Abstract: Apparatuses for controlling a humidity level within an enclosed volume storage device and methods for using same. The apparatus, in one embodiment, comprises a container having outer walls defining an inner volume, at least one of the outer walls, preferably an lid wall, having perforations therein. The apparatus further comprises a composition capable of adsorbing and desorbing water and contained in the inner volume of the container. The composition is hydrated to a hydration level less than about 0.13 mL water per gram of the composition. The methods include a step of hydrating the composition in an apparatus of the invention to a hydration level less than about 0.13 mL water per gram of composition.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: February 22, 2011
    Inventor: Mark David Neff
  • Publication number: 20100238181
    Abstract: A method and system are disclosed for rendering animated graphics on a browser client based upon a stream of runtime data from a manufacturing/process control system. The graphics animation is based upon an animated graphic display object specification and runtime data from a portal server affecting an appearance trait of the animated graphic display object. The client browser receives an animated graphics description from the portal server specifying an animation behavior for an identified graphical display object. The client creates a data exchange connection between an animated display object, corresponding to the animated graphics description, and a source of runtime data from the portal server affecting display of the animated display object. Thereafter, the client applies runtime data received from the source of runtime data to the animated display object to render an animated graphic display object.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: Invensys Systems, Inc.
    Inventors: Paul W. Forney, Rashesh Mody, Chau Bich Trieu, David Neff, Todd Miller, Kimson Q. Nguyen