Patents by Inventor David Nigel Roundhill

David Nigel Roundhill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099692
    Abstract: There is proposed a mechanism for determining whether or not an imaging probe, such as an ultrasound imaging probe, is at a desired orientation and/or position with respect to an anatomical structure. Image data of the imaging probe is processed to generate a 3D landmark model that contains anatomical landmarks of the anatomical structure. The 3D landmark model is then processed to determine whether or not the imaging probe is at the desired orientation and/or position.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 28, 2024
    Inventors: Karthik Krishnan, Celine Firtion, Pallavi Vajinepalli, Giridhar Narasapura Rajagopalaiah, Saunak Chatterjee, Robert Gustav Trahms, Earl M. Canfield, II, Matthew Rielly, David Nigel Roundhill
  • Patent number: 11684343
    Abstract: A medical imaging system configured to analyze an acquired image to determine the imaging plane and orientation of the image. The medical imaging system may be further configured to determine a location of an aperture to acquire a key anatomical view and transmit instructions to a controller to move the aperture to the location. A sonographer may not need to move the ultrasound probe for the medical imaging system to move the aperture to the location. An ultrasound probe may include a transducer array that may have one or more degrees of freedom of movement within the probe. The transducer array may be translated by one or more motors that receive instructions from the controller to position the aperture.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: June 27, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: David Nigel Roundhill, Jeffrey Scott Hart
  • Publication number: 20230124879
    Abstract: A computer-implemented method for visualization of an elongated anatomical structure (20), for example of a fetal spine using ultrasound is provided.
    Type: Application
    Filed: March 24, 2021
    Publication date: April 20, 2023
    Inventors: Karthik Krishnan, Celine Firtion, Subhendu Seth, Pallavi Vajinepalli, David Nigel Roundhill
  • Publication number: 20230054610
    Abstract: An ultrasound imaging system includes a processor circuit in communication with an ultrasound transducer configured to receive three-dimensional ultrasound data of an anatomy, and generate a target image corresponding to a target image plane of the anatomy, and a plurality of adjacent images corresponding to image planes adjacent to the target image plane along a simulated motion path. The processor circuit is further configured to display the target image, receive a user input representative of a direction of motion along the simulated motion path, and display an adjacent image of the plurality of adjacent images corresponding to the direction of motion. Accordingly, the user can observe the target image in its spatial context by scanning through the target image and one or more adjacent images on the display as if the ultrasound transducer were being scanned along the simulated motion path.
    Type: Application
    Filed: February 22, 2021
    Publication date: February 23, 2023
    Inventors: David Nigel Roundhill, Tobias Klinder, Alexander Schmidt-Richberg, Matthias Lenga, Eliza Teodora Orasanu, Cristian Lorenz
  • Publication number: 20220344034
    Abstract: A system for recording ultrasound images comprises a memory comprising instruction data representing a set of instructions and a processor configured to communicate with the memory and to execute the set of instructions. The set of instructions, when executed by the processor, cause the processor to receive a data stream of two dimensional images taken using an ultrasound transducer and determine from the data stream that a feature of interest is in view of the transducer. The set of instructions further cause the processor to trigger an alert to be sent to a user to indicate that the feature of interest is in view of the transducer, and send an instruction to the transducer to trigger the transducer to capture a three dimensional ultrasound image after a predetermined time interval.
    Type: Application
    Filed: September 25, 2020
    Publication date: October 27, 2022
    Inventors: David Nigel Roundhill, Tobias Klinder, Alexander Schmidt-Richberg, Matthias Lenga, Eliza Teodora Orasanu, Cristian Lorenz
  • Patent number: 11403778
    Abstract: An ultrasound image processing apparatus (16) is disclosed comprising a processor arrangement (46, 50) adapted to receive a temporal sequence (15) of ultrasound images (150) of at least a chest region (151) of a fetal entity (62) from an ultrasound probe (14), said chest region including the fetal heart (171), said temporal sequence capturing at least part of a cardiac cycle of the fetal heart; identify the chest region of the fetal entity in one or more of the ultrasound images of said temporal sequence; identify a portion of the spine in the identified chest region; calculate an orientation axis (160) of the fetal chest from the identified chest region and the identified spine portion; identify the septum of the fetal heart as a linear structure which is temporally more stable than its surrounding structures in said temporal sequence of ultrasound images and which defines a region of convergence of the movements of the fetal heart during said cardiac cycle; calculate an orientation axis (170) of the fetal h
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: August 2, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cybèle Ciofolo-Veit, Laurence Rouet, Caroline Denise Francoise Raynaud, David Nigel Roundhill
  • Publication number: 20220167947
    Abstract: The invention provides for a method of obtaining a composite 3D ultrasound image of a region of interest. The method includes obtaining preliminary ultrasound data from a region of interest of a subject and identifying an anatomical feature within the region of interest based on the preliminary ultrasound data. A first imaging position and one or more additional imaging positions are then determined based on the anatomical feature. A first 3D ultrasound image is obtained from the first imaging position and one or more additional 3D ultrasound images are obtained from the one or more additional imaging positions, wherein a portion of the first 3D ultrasound image overlaps a portion of the one or more additional 3D ultrasound images, thereby forming an overlapping portion comprising the anatomical feature.
    Type: Application
    Filed: March 6, 2020
    Publication date: June 2, 2022
    Inventors: SUBHENDU SETH, CELINE FIRTION, PALLAVI VAJINEPALLI, DAVID NIGEL ROUNDHILL
  • Patent number: 11337677
    Abstract: An ultrasound image processing apparatus (200) is disclosed for obtaining a biometric measurement of an anatomical feature of interest from a 3D ultrasound image.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Emmanuel Mocé Serge Attia, Cristian Lorenz, David Nigel Roundhill, Alasdair Dow, Benoit Jean-Dominique Bertrand Maurice Mory
  • Patent number: 11341634
    Abstract: A computer implemented method is provided for processing a 3D fetal ultrasound image. A 3D fetal ultrasound image is obtained (either acquired or received from memory), and the spine is detected within the image. This enables a first reference axis to be defined. A second reference axis is defined perpendicular to the first reference axis, and the 3D fetal ultrasound image is updated (e.g. rotated in 3D space) using the first and second reference axes and an up/down (elevation) orientation detection. This provides a normalization of the orientation of the image, so that a machine learning approach is better able to identify landmarks within new images.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Caroline Denise Francoise Raynaud, Laurence Rouet, Cybèle Ciofolo-Veit, Thierry Lefevre, David Nigel Roundhill
  • Patent number: 11109839
    Abstract: Methods and systems are provided for displaying a 3D ultrasound image volume in a desired view orientation. A 3D ultrasound image can be acquired of an anatomical feature in a patient. The actual orientation of the anatomical feature can be determined in space. The 3D ultrasound image including the anatomical feature can be displayed such that the anatomical feature is positioned in a selected orientation that is different than the actual orientation, and in relation to a lighting model for generating lighting and shadowing on the anatomical feature.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: September 7, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: David Nigel Roundhill
  • Patent number: 11055899
    Abstract: The present disclosure describes a medical imaging and visualization system that provides a user interface enabling a user to visualize a volume rendering of a three dimensional (3D) data set and to manipulate the volume rendering to dynamically select a MPR plane of the 3D data set for generating a B-mode image at the dynamically selected MPR plane. In some examples, the 3D data set is rendered as a 2D projection of the volume and a user control enables the user to dynamically move the location of the MPR plane while the display updates the rendering of the volume to indicate the current location of the MPR plane and/or corresponding B-mode image.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: July 6, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: David Nigel Roundhill, Benoit Jean-Dominique Bertrand Maurice Mory, Emmanuel Mocé Serge Attia-Gani, Jean-Michel Rouet
  • Publication number: 20200234435
    Abstract: A computer implemented method is provided for processing a 3D fetal ultrasound image. A 3D fetal ultrasound image is obtained (either acquired or received from memory), and the spine is detected within the image. This enables a first reference axis to be defined. A second reference axis is defined perpendicular to the first reference axis, and the 3D fetal ultrasound image is updated (e.g. rotated in 3D space) using the first and second reference axes and an up/down (elevation) orientation detection. This provides a normalization of the orientation of the image, so that a machine learning approach is better able to identify landmarks within new images.
    Type: Application
    Filed: July 12, 2018
    Publication date: July 23, 2020
    Inventors: Caroline Denise Francoise Raynaud, Laurence Rouet, Cybèle Ciofolo-Veit, Thierry Lefevre, David Nigel Roundhill
  • Publication number: 20200202551
    Abstract: An ultrasound image processing apparatus (16) is disclosed comprising a processor arrangement (46, 50) adapted to receive a temporal sequence (15) of ultrasound images (150) of at least a chest region (151) of a fetal entity (62) from an ultrasound probe (14), said chest region including the fetal heart (171), said temporal sequence capturing at least part of a cardiac cycle of the fetal heart; identify the chest region of the fetal entity in one or more of the ultrasound images of said temporal sequence; identify a portion of the spine in the identified chest region; calculate an orientation axis (160) of the fetal chest from the identified chest region and the identified spine portion; identify the septum of the fetal heart as a linear structure which is temporally more stable than its surrounding structures in said temporal sequence of ultrasound images and which defines a region of convergence of the movements of the fetal heart during said cardiac cycle; calculate an orientation axis (170) of the fetal h
    Type: Application
    Filed: May 3, 2018
    Publication date: June 25, 2020
    Inventors: Cybèle Ciofolo-Veit, Laurence Rouet, Caroline Denise Francoise Raynaud, David Nigel Roundhill
  • Publication number: 20200170615
    Abstract: An ultrasound system includes an image extraction processor which is responsive to the touching of at least a portion of desired anatomy in an ultrasound image on a touchscreen display to extract an image of the desired anatomy from a 3D volumetric data set which includes the desired anatomy. The system and method can also be used to extract standard view images from volumetric image data of anatomy.
    Type: Application
    Filed: August 10, 2018
    Publication date: June 4, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventor: David Nigel Roundhill
  • Publication number: 20200015785
    Abstract: An ultrasound image processing apparatus (200) is disclosed for obtaining a biometric measurement of an anatomical feature of interest from a 3D ultrasound image.
    Type: Application
    Filed: March 19, 2018
    Publication date: January 16, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Emmanuel Mocé Serge Attia, Cristian Lorenz, David Nigel Roundhill, Alasdair Dow, Benoit Jean-Dominique Bertrand Maurice Mory
  • Publication number: 20190272667
    Abstract: The present disclosure describes a medical imaging and visualization system that provides a user interface enabling a user to visualize a volume rendering of a three dimensional (3D) data set and to manipulate the volume rendering to dynamically select a MPR plane of the 3D data set for generating a B-mode image at the dynamically selected MPR plane. In some examples, the 3D data set is rendered as a 2D projection of the volume and a user control enables the user to dynamically move the location of the MPR plane while the display updates the rendering of the volume to indicate the current location of the MPR plane and/or corresponding B-mode image.
    Type: Application
    Filed: June 12, 2017
    Publication date: September 5, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: David Nigel Roundhill, Emmanuel Mocé Serge Attia, Benoit Jean-Dominique Bertrand Maurice Mory, Jean-Michel Rouet
  • Patent number: 10376241
    Abstract: Methods and systems are provided for displaying a 3D ultrasound image volume in a desired view orientation. A 3D ultrasound image can be acquired of an anatomical feature in a patient. The actual orientation of the anatomical feature can be determined in space. The 3D ultrasound image including the anatomical feature can be displayed such that the anatomical feature is positioned in a selected orientation that is different than the actual orientation, and in relation to a lighting model for generating lighting and shadowing on the anatomical feature.
    Type: Grant
    Filed: May 9, 2015
    Date of Patent: August 13, 2019
    Assignee: Koninklijke Philips N.V.
    Inventor: David Nigel Roundhill
  • Publication number: 20190192118
    Abstract: Methods and systems are provided for displaying a 3D ultrasound image volume in a desired view orientation. A 3D ultrasound image can be acquired of an anatomical feature in a patient. The actual orientation of the anatomical feature can be determined in space. The 3D ultrasound image including the anatomical feature can be displayed such that the anatomical feature is positioned in a selected orientation that is different than the actual orientation, and in relation to a lighting model for generating lighting and shadowing on the anatomical feature.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventor: David Nigel Roundhill
  • Publication number: 20170128045
    Abstract: A medical imaging system configured to analyze an acquired image to determine the imaging plane and orientation of the image. The medical imaging system may be further configured to determine a location of an aperture to acquire a key anatomical view and transmit instructions to a controller to move the aperture to the location. A sonographer may not need to move the ultrasound probe for the medical imaging system to move the aperture to the location. An ultrasound probe may include a transducer array that may have one or more degrees of freedom of movement within the probe. The transducer array may be translated by one or more motors that receive instructions from the controller to position the aperture.
    Type: Application
    Filed: June 16, 2015
    Publication date: May 11, 2017
    Inventors: David Nigel Roundhill, Jeffrey Scott Hart
  • Publication number: 20170119354
    Abstract: Methods and systems are provided for displaying a 3D ultrasound image volume in a desired view orientation. A 3D ultrasound image can be acquired of an anatomical feature in a patient. The actual orientation of the anatomical feature can be determined in space. The 3D ultrasound image including the anatomical feature can be displayed such that the anatomical feature is positioned in a selected orientation that is different than the actual orientation, and in relation to a lighting model for generating lighting and shadowing on the anatomical feature.
    Type: Application
    Filed: May 9, 2015
    Publication date: May 4, 2017
    Inventor: David Nigel Roundhill