Patents by Inventor David Nistér

David Nistér has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250222958
    Abstract: A system and method for an on-demand shuttle, bus, or taxi service able to operate on private and public roads provides situational awareness and confidence displays. The shuttle may include ISO 26262 Level 4 or Level 5 functionality and can vary the route dynamically on-demand, and/or follow a predefined route or virtual rail. The shuttle is able to stop at any predetermined station along the route. The system allows passengers to request rides and interact with the system via a variety of interfaces, including without limitation a mobile device, desktop computer, or kiosks. Each shuttle preferably includes an in-vehicle controller, which preferably is an AI Supercomputer designed and optimized for autonomous vehicle functionality, with computer vision, deep learning, and real time ray tracing accelerators. An AI Dispatcher performs AI simulations to optimize system performance according to operator-specified system parameters.
    Type: Application
    Filed: January 8, 2024
    Publication date: July 10, 2025
    Inventors: Gary HICOK, Michael COX, Miguel SAINZ, Martin HEMPEL, Ratin KUMAR, Timo ROMAN, Gordon GRIGOR, David NISTER, Justin EBERT, Chin-Hsien SHIH, Tony TAM, Ruchi BHARGAVA
  • Patent number: 12353213
    Abstract: In various examples, a current claimed set of points representative of a volume in an environment occupied by a vehicle at a time may be determined. A vehicle-occupied trajectory and at least one object-occupied trajectory may be generated at the time. An intersection between the vehicle-occupied trajectory and an object-occupied trajectory may be determined based at least in part on comparing the vehicle-occupied trajectory to the object-occupied trajectory. Based on the intersection, the vehicle may then execute the first safety procedure or an alternative procedure that, when implemented by the vehicle when the object implements the second safety procedure, is determined to have a lesser likelihood of incurring a collision between the vehicle and the object than the first safety procedure.
    Type: Grant
    Filed: February 5, 2024
    Date of Patent: July 8, 2025
    Assignee: NVIDIA Corporation
    Inventors: David Nister, Hon-Leung Lee, Julia Ng, Yizhou Wang
  • Patent number: 12346119
    Abstract: In various examples, one or more output channels of a deep neural network (DNN) may be used to determine assignments of obstacles to paths. To increase the accuracy of the DNN, the input to the DNN may include an input image, one or more representations of path locations, and/or one or more representations of obstacle locations. The system may thus repurpose previously computed information—e.g., obstacle locations, path locations, etc.—from other operations of the system, and use them to generate more detailed inputs for the DNN to increase accuracy of the obstacle to path assignments. Once the output channels are computed using the DNN, computed bounding shapes for the objects may be compared to the outputs to determine the path assignments for each object. Additionally, a machine may perform control operations based at least on the path assignments.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: July 1, 2025
    Assignee: NVIDIA Corporation
    Inventors: Neeraj Sajjan, Mehmet K. Kocamaz, Junghyun Kwon, Sangmin Oh, Minwoo Park, David Nister
  • Publication number: 20250200755
    Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersection contention areas in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute outputs—such as signed distance functions—that may correspond to locations of boundaries delineating intersection contention areas. The signed distance functions may be decoded and/or post-processed to determine instance segmentation masks representing locations and classifications of intersection areas or regions. The locations of the intersections areas or regions may be generated in image-space and converted to world-space coordinates to aid an autonomous or semi-autonomous vehicle in navigating intersections according to rules of the road, traffic priority considerations, and/or the like.
    Type: Application
    Filed: February 19, 2025
    Publication date: June 19, 2025
    Inventors: Trung Pham, Berta Rodriguez Hervas, Minwoo Park, David Nister, Neda Cvijetic
  • Publication number: 20250199149
    Abstract: One or more embodiments of the present disclosure relate to generation of map data. In these or other embodiments, the generation of the map data may include determining whether objects indicated by the sensor data are static objects or dynamic objects. Additionally or alternatively, sensor data may be removed or included in the map data based on determinations as to whether it corresponds to static objects or dynamic objects.
    Type: Application
    Filed: February 19, 2025
    Publication date: June 19, 2025
    Inventors: Amir AKBARZADEH, Andrew CARLEY, Birgit HENKE, Si LU, Ivana STOJANOVIC, Jugnu AGRAWAL, Michael KROEPFL, Yu SHENG, David NISTER, Enliang ZHENG
  • Publication number: 20250178595
    Abstract: In various examples, sensor data representative of a field of view of at least one sensor of a vehicle in an environment is received from the at least one sensor. Based at least in part on the sensor data, parameters of an object located in the environment are determined. Trajectories of the object are modeled toward target positions based at least in part on the parameters of the object. From the trajectories, safe time intervals (and/or safe arrival times) over which the vehicle occupying the plurality of target positions would not result in a collision with the object are computed. Based at least in part on the safe time intervals (and/or safe arrival times) and a position of the vehicle in the environment a trajectory for the vehicle may be generated and/or analyzed.
    Type: Application
    Filed: January 28, 2025
    Publication date: June 5, 2025
    Inventors: David Nister, Anton Vorontsov
  • Patent number: 12299892
    Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersection contention areas in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute outputs—such as signed distance functions—that may correspond to locations of boundaries delineating intersection contention areas. The signed distance functions may be decoded and/or post-processed to determine instance segmentation masks representing locations and classifications of intersection areas or regions. The locations of the intersections areas or regions may be generated in image-space and converted to world-space coordinates to aid an autonomous or semi-autonomous vehicle in navigating intersections according to rules of the road, traffic priority considerations, and/or the like.
    Type: Grant
    Filed: December 20, 2023
    Date of Patent: May 13, 2025
    Assignee: NVIDIA Corporation
    Inventors: Trung Pham, Berta Rodriguez Hervas, Minwoo Park, David Nister, Neda Cvijetic
  • Patent number: 12292495
    Abstract: One or more embodiments of the present disclosure relate to generation of map data. In these or other embodiments, the generation of the map data may include determining whether objects indicated by the sensor data are static objects or dynamic objects. Additionally or alternatively, sensor data may be removed or included in the map data based on determinations as to whether it corresponds to static objects or dynamic objects.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: May 6, 2025
    Assignee: NVIDIA CORPORATION
    Inventors: Amir Akbarzadeh, Andrew Carley, Birgit Henke, Si Lu, Ivana Stojanovic, Jugnu Agrawal, Michael Kroepfl, Yu Sheng, David Nister, Enliang Zheng
  • Publication number: 20250138530
    Abstract: In various examples, systems and methods are disclosed that preserve rich spatial information from an input resolution of a machine learning model to regress on lines in an input image. The machine learning model may be trained to predict, in deployment, distances for each pixel of the input image at an input resolution to a line pixel determined to correspond to a line in the input image. The machine learning model may further be trained to predict angles and label classes of the line. An embedding algorithm may be used to train the machine learning model to predict clusters of line pixels that each correspond to a respective line in the input image. In deployment, the predictions of the machine learning model may be used as an aid for understanding the surrounding environment—e.g., for updating a world model—in a variety of autonomous machine applications.
    Type: Application
    Filed: December 30, 2024
    Publication date: May 1, 2025
    Inventors: Minwoo Park, Xiaolin Lin, Hae-Jong Seo, David Nister, Neda Cvijetic
  • Publication number: 20250138534
    Abstract: In various examples, a current claimed set of points representative of a volume in an environment occupied by a vehicle at a time may be determined. A vehicle-occupied trajectory and at least one object-occupied trajectory may be generated at the time. An intersection between the vehicle-occupied trajectory and an object-occupied trajectory may be determined based at least in part on comparing the vehicle-occupied trajectory to the object-occupied trajectory. Based on the intersection, the vehicle may then execute the first safety procedure or an alternative procedure that, when implemented by the vehicle when the object implements the second safety procedure, is determined to have a lesser likelihood of incurring a collision between the vehicle and the object than the first safety procedure.
    Type: Application
    Filed: January 6, 2025
    Publication date: May 1, 2025
    Inventors: David Nister, Hon-Leung Lee, Julia Ng, Yizhou Wang
  • Patent number: 12286115
    Abstract: In various examples, a three-dimensional (3D) intersection structure may be predicted using a deep neural network (DNN) based on processing two-dimensional (2D) input data. To train the DNN to accurately predict 3D intersection structures from 2D inputs, the DNN may be trained using a first loss function that compares 3D outputs of the DNN—after conversion to 2D space—to 2D ground truth data and a second loss function that analyzes the 3D predictions of the DNN in view of one or more geometric constraints—e.g., geometric knowledge of intersections may be used to penalize predictions of the DNN that do not align with known intersection and/or road structure geometries. As such, live perception of an autonomous or semi-autonomous vehicle may be used by the DNN to detect 3D locations of intersection structures from 2D inputs.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: April 29, 2025
    Assignee: NVIDIA Corporation
    Inventors: Trung Pham, Berta Rodriguez Hervas, Minwoo Park, David Nister, Neda Cvijetic
  • Patent number: 12269488
    Abstract: In various examples, an end-to-end perception evaluation system for autonomous and semi-autonomous machine applications may be implemented to evaluate how the accuracy or precision of outputs of machine learning models—such as deep neural networks (DNNs)—impact downstream performance of the machine when relied upon. For example, decisions computed by the system using ground truth output types may be compared to decisions computed by the system using the perception outputs. As a result, discrepancies in downstream decision making of the system between the ground truth information and the perception information may be evaluated to either aid in updating or retraining of the machine learning model or aid in generating more accurate or precise ground truth information.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 8, 2025
    Assignee: NVIDIA Corporation
    Inventors: David Nister, Cheng-Chieh Yang, Yue Wu
  • Publication number: 20250100581
    Abstract: A trajectory for an autonomous machine may be evaluated for safety based at least on determining whether the autonomous machine would be capable of occupying points of the trajectory in space-time while still being able to avoid a potential future collision with one or more objects in the environment through use of one or more safety procedures. To do so, a point of the trajectory may be evaluated for conflict based at least on a comparison between points in space-time that correspond to the autonomous machine executing the safety procedure(s) from the point and arrival times of the one or more objects to corresponding position(s) in the environment. A trajectory may be sampled and evaluated for conflicts at various points throughout the trajectory. Based on results of one or more evaluations, the trajectory may be scored, eliminated from consideration, or otherwise considered for control of the autonomous machine.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Birgit Henke, David Nister, Julia Ng
  • Publication number: 20250083704
    Abstract: In various examples, a safety decomposition architecture for autonomous machine applications is presented that uses two or more individual safety assessments to satisfy a higher safety integrity level (e.g., ASIL D). For example, a behavior planner may be used as a primary planning component, and a collision avoidance feature may be used as a diverse safety monitoring component—such that both may redundantly and independently prevent violation of safety goals. In addition, robustness of the system may be improved as single point and systematic failures may be avoided due to the requirement that two independent failures—e.g., of the behavior planner component and the collision avoidance component—occur simultaneously to cause a violation of the safety goals.
    Type: Application
    Filed: November 25, 2024
    Publication date: March 13, 2025
    Inventors: Julia Ng, Sachin Pullaikudi Veedu, David Nister, Hanne Buur, Hans Jonas Nilsson, Hon Leung Lee, Yunfei Shi, Charles Jerome Vorbach, Jr.
  • Patent number: 12249163
    Abstract: In various examples, object fence corresponding to objects detected by an ego-vehicle may be used to determine overlap of the object fences with lanes on a driving surface. A lane mask may be generated corresponding to the lanes on the driving surface, and the object fences may be compared to the lanes of the lane mask to determine the overlap. Where an object fence is located in more than one lane, a boundary scoring approach may be used to determine a ratio of overlap of the boundary fence, and thus the object, with each of the lanes. The overlap with one or more lanes for each object may be used to determine lane assignments for the objects, and the lane assignments may be used by the ego-vehicle to determine a path or trajectory along the driving surface.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 11, 2025
    Assignee: NVIDIA Corporation
    Inventors: Josh Abbott, Miguel Sainz Serra, Zhaoting Ye, David Nister
  • Patent number: 12248319
    Abstract: In various examples, systems and methods are disclosed that preserve rich spatial information from an input resolution of a machine learning model to regress on lines in an input image. The machine learning model may be trained to predict, in deployment, distances for each pixel of the input image at an input resolution to a line pixel determined to correspond to a line in the input image. The machine learning model may further be trained to predict angles and label classes of the line. An embedding algorithm may be used to train the machine learning model to predict clusters of line pixels that each correspond to a respective line in the input image. In deployment, the predictions of the machine learning model may be used as an aid for understanding the surrounding environment—e.g., for updating a world model—in a variety of autonomous machine applications.
    Type: Grant
    Filed: June 23, 2023
    Date of Patent: March 11, 2025
    Assignee: NVIDIA Corporation
    Inventors: Minwoo Park, Xiaolin Lin, Hae-Jong Seo, David Nister, Neda Cvijetic
  • Publication number: 20250065920
    Abstract: A system and method for an on-demand shuttle, bus, or taxi service able to operate on private and public roads provides situational awareness and confidence displays. The shuttle may include ISO 26262 Level 4 or Level 5 functionality and can vary the route dynamically on-demand, and/or follow a predefined route or virtual rail. The shuttle is able to stop at any predetermined station along the route. The system allows passengers to request rides and interact with the system via a variety of interfaces, including without limitation a mobile device, desktop computer, or kiosks. Each shuttle preferably includes an in-vehicle controller, which preferably is an AI Supercomputer designed and optimized for autonomous vehicle functionality, with computer vision, deep learning, and real time ray tracing accelerators. An AI Dispatcher performs AI simulations to optimize system performance according to operator-specified system parameters.
    Type: Application
    Filed: November 8, 2024
    Publication date: February 27, 2025
    Inventors: Gary HICOK, Michael COX, Miguel SAINZ, Martin HEMPEL, Ratin KUMAR, Timo ROMAN, Gordon GRIGOR, David NISTER, Justin EBERT, Chin-Hsien SHIH, Tony TAM, Ruchi BHARGAVA
  • Publication number: 20250029264
    Abstract: In various examples, an ego-machine may analyze sensor data to identify and track features in the sensor data using. Geometry of the tracked features may be used to analyze motion flow to determine whether the motion flow violates one or more geometrical constraints. As such, tracked features may be identified as dynamic features when the motion flow corresponding to the tracked features violates the one or more static constraints for static features. Tracked features that are determined to be dynamic features may be clustered together according to their location and feature track. Once features have been clustered together, the system may calculate a detection bounding shape for the clustered features. The bounding shape information may then be used by the ego-machine for path planning, control decisions, obstacle avoidance, and/or other operations.
    Type: Application
    Filed: October 3, 2024
    Publication date: January 23, 2025
    Inventors: David Nister, Soohwan Kim, Yue Wu, Minwoo Park, Cheng-Chieh Yang
  • Patent number: 12202518
    Abstract: In various examples, a safety decomposition architecture for autonomous machine applications is presented that uses two or more individual safety assessments to satisfy a higher safety integrity level (e.g., ASIL D). For example, a behavior planner may be used as a primary planning component, and a collision avoidance feature may be used as a diverse safety monitoring component—such that both may redundantly and independently prevent violation of safety goals. In addition, robustness of the system may be improved as single point and systematic failures may be avoided due to the requirement that two independent failures—e.g., of the behavior planner component and the collision avoidance component—occur simultaneously to cause a violation of the safety goals.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: January 21, 2025
    Assignee: NVIDIA Corporation
    Inventors: Julia Ng, Sachin Pullaikudi Veedu, David Nister, Hanne Buur, Hans Jonas Nilsson, Hon Leung Lee, Yunfei Shi, Charles Jerome Vorbach, Jr.
  • Publication number: 20250014186
    Abstract: A deep neural network(s) (DNN) may be used to perform panoptic segmentation by performing pixel-level class and instance segmentation of a scene using a single pass of the DNN. Generally, one or more images and/or other sensor data may be stitched together, stacked, and/or combined, and fed into a DNN that includes a common trunk and several heads that predict different outputs. The DNN may include a class confidence head that predicts a confidence map representing pixels that belong to particular classes, an instance regression head that predicts object instance data for detected objects, an instance clustering head that predicts a confidence map of pixels that belong to particular instances, and/or a depth head that predicts range values. These outputs may be decoded to identify bounding shapes, class labels, instance labels, and/or range values for detected objects, and used to enable safe path planning and control of an autonomous vehicle.
    Type: Application
    Filed: December 27, 2023
    Publication date: January 9, 2025
    Inventors: Ke CHEN, Nikolai SMOLYANSKIY, Alexey KAMENEV, Ryan OLDJA, Tilman WEKEL, David NISTER, Joachim PEHSERL, Ibrahim EDEN, Sangmin OH, Ruchi BHARGAVA