Patents by Inventor David Ovard

David Ovard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395317
    Abstract: Systems, methods and apparatus are provided for a multi-coil induction apparatus. The multi-coil induction apparatus has a primary coil structure with a primary first coil portion and a primary second coil portion where both are on a common planar surface; and a secondary coil structure having a secondary first coil portion and a secondary second coil, where the secondary first coil portion and the secondary second coil portion are coplanar with the primary first coil portion and the primary second coil. The primary first coil portion and the secondary first coil portion concentrically turn on the common planar surface to form a coupled induction section while the primary second coil portion and the secondary second coil portion are adjacent the coupled induction section on the common planar surface.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 7, 2023
    Inventors: Timothy Hollis, David Ovard
  • Patent number: 8364856
    Abstract: A memory module is coupled to a number of controllers. The memory module is configured to configure each of a number of data input/output ports thereof as at least one of an input and an output in response to a first command from a particular controller of the controllers. The memory module is configured to partition itself into memory partitions in response to a second command from the particular controller so that each memory partition corresponds to a respective one of the controllers. Each of a number of data input/output ports of the controllers is configurable as at least one of an input and an output to correspond to a respective one of the input/output ports of the memory module. The first and second commands may originate from the particular controller, or the controllers may be coupled in parallel to the memory module.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 29, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Terry R. Lee, David Ovard, Roy Greeff, Robert N. Leibowitz, Victor Tsai
  • Publication number: 20120198201
    Abstract: A memory module is coupled to a number of controllers. The memory module is configured to configure each of a number of data input/output ports thereof as at least one of an input and an output in response to a first command from a particular controller of the controllers. The memory module is configured to partition itself into memory partitions in response to a second command from the particular controller so that each memory partition corresponds to a respective one of the controllers. Each of a number of data input/output ports of the controllers is configurable as at least one of an input and an output to correspond to a respective one of the input/output ports of the memory module. The first and second commands may originate from the particular controller, or the controllers may be coupled in parallel to the memory module.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Inventors: Terry R. LEE, David Ovard, Roy Greeff, Robert N. Leibowitz, Victor Tsai
  • Patent number: 8171181
    Abstract: A memory module has one or more memory devices, a controller in communication with the one or more memory devices, and a plurality of input/output ports. The controller is configured to configure each input/output port as an input, an output, or a bidirectional input/output.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: May 1, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Terry R. Lee, David Ovard, Roy Greeff, Robert N. Leibowitz, Victor Tsai
  • Patent number: 7746959
    Abstract: A method and system for generating a reference voltage for memory device signal receivers operates in either a calibration mode or a normal operating mode. In the calibration mode, the magnitude of the reference voltage is incrementally varied, and a digital signal pattern is coupled to the receiver at each reference voltage. An output of the receiver is analyzed to determine if the receiver can accurately pass the signal pattern at each reference voltage level. A range of reference voltages that allow the receiver to accurately pass the signal pattern is recorded, and a final reference voltage is calculated at the approximate midpoint of the range. This final reference voltage is applied to the receiver during normal operation.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 29, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Brent Keeth, Joo S. Choi, George E. Pax, Ronnie M. Harrison, David Ovard, Dragos Dimitriu, Troy A. Manning, Roy E. Greeff, Greg King, Brian Johnson
  • Publication number: 20090276545
    Abstract: A memory module has one or more memory devices, a controller in communication with the one or more memory devices, and a plurality of input/output ports. The controller is configured to configure each input/output port as an input, an output, or a bidirectional input/output.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 5, 2009
    Inventors: Terry R. Lee, David Ovard, Roy Greeff, Robert N. Leibowitz, Victor Tsai
  • Patent number: 7577212
    Abstract: A method and system for generating a reference voltage for memory device signal receivers operates in either a calibration mode or a normal operating mode. In the calibration mode, the magnitude of the reference voltage is incrementally varied, and a digital signal pattern is coupled to the receiver at each reference voltage. An output of the receiver is analyzed to determine if the receiver can accurately pass the signal pattern at each reference voltage level. A range of reference voltages that allow the receiver to accurately pass the signal pattern is recorded, and a final reference voltage is calculated at the approximate midpoint of the range. This final reference voltage is applied to the receiver during normal operation.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 18, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Brent Keeth, Joo S. Choi, George E. Pax, Ronnie M. Harrison, David Ovard, Dragos Dimitriu, Troy A. Manning, Roy E. Greeff, Greg King, Brian Johnson
  • Publication number: 20090184745
    Abstract: A system for de-emphasizing digital signals, such as address signals, boosts the level of the signals for one clock period prior to transmitting the signals through signal lines that may have a relatively large capacitance. The system may include a delay circuit that delays the digital signal for a period corresponding to one period of a clock signal. The system may also include a first multiplier circuit that generates a first intermediate signal by multiplying the first and second logic levels of the digital signal by a first multiplier. Similarly, a second multiplier circuit generates a second intermediate signal by multiplying the first and second logic levels of the delayed signal from the delay circuit by a second multiplier. A combining circuit then subtracts the second intermediate signal from the first intermediate signal, and the resulting signal is level-adjusted to generate the de-emphasized signal.
    Type: Application
    Filed: April 1, 2009
    Publication date: July 23, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Roy Greeff, David Ovard
  • Patent number: 7514979
    Abstract: A system for de-emphasizing digital signals, such as address signals, boosts the level of the signals for one clock period prior to transmitting the signals through signal lines that may have a relatively large capacitance. The system may include a delay circuit that delays the digital signal for a period corresponding to one period of a clock signal. The system may also include a first multiplier circuit that generates a first intermediate signal by multiplying the first and second logic levels of the digital signal by a first multiplier. Similarly, a second multiplier circuit generates a second intermediate signal by multiplying the first and second logic levels of the delayed signal from the delay circuit by a second multiplier. A combining circuit then subtracts the second intermediate signal from the first intermediate signal, and the resulting signal is level-adjusted to generate the de-emphasized signal.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Roy Greeff, David Ovard
  • Patent number: 7424634
    Abstract: A method and system for coupling digital signals from a first location to a second location through respective signal lines includes a mode detector that detects each of the transitions of the digital signals. The mode detector determines respective propagation times of the signals through the signal lines based on the relative transitions of the signals. The mode detector then applies delay values to delay circuits that couple the signals to the signal lines with respective delays corresponding to the delay values. The delay values may be determined by coupling a predetermined pattern of test signals through the signal lines and determining which delay values allow the signals to be most accurately captured at the second location.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: September 9, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Roy Greeff, David Ovard
  • Publication number: 20080204108
    Abstract: A system for de-emphasizing digital signals, such as address signals, boosts the level of the signals for one clock period prior to transmitting the signals through signal lines that may have a relatively large capacitance. The system may include a delay circuit that delays the digital signal for a period corresponding to one period of a clock signal. The system may also include a first multiplier circuit that generates a first intermediate signal by multiplying the first and second logic levels of the digital signal by a first multiplier. Similarly, a second multiplier circuit generates a second intermediate signal by multiplying the first and second logic levels of the delayed signal from the delay circuit by a second multiplier. A combining circuit then subtracts the second intermediate signal from the first intermediate signal, and the resulting signal is level-adjusted to generate the de-emphasized signal.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 28, 2008
    Applicant: Micron Technology, Inc.
    Inventors: Roy Greeff, David Ovard
  • Patent number: 7375573
    Abstract: A system for de-emphasizing digital signals, such as address signals, boosts the level of the signals for one clock period prior to transmitting the signals through signal lines that may have a relatively large capacitance. The system may include a delay circuit that delays the digital signal for a period corresponding to one period of a clock signal. The system may also include a first multiplier circuit that generates a first intermediate signal by multiplying the first and second logic levels of the digital signal by a first multiplier. Similarly, a second multiplier circuit generates a second intermediate signal by multiplying the first and second logic levels of the delayed signal from the delay circuit by a second multiplier. A combining circuit then subtracts the second intermediate signal from the first intermediate signal, and the resulting signal is level-adjusted to generate the de-emphasized signal.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: May 20, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Roy Greeff, David Ovard
  • Publication number: 20080048835
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 29, 2007
    Publication date: February 28, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080048832
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 28, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080030353
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 29, 2007
    Publication date: February 7, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080030306
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 7, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080001754
    Abstract: The present invention relates to wireless communication systems, interrogators and methods of communicating within a wireless communication system. One aspect of the present invention provides a wireless communication system including at least one remote communication device configured to communicate a return link wireless signal; an interrogator including: a communication station configured to receive the return link wireless signal and to generate a return link communication signal corresponding to the return link wireless signal; communication circuitry coupled with the communication station and configured to communicate the return link communication signal; and a housing remotely located with respect to the communication station and including circuitry configured to receive the return link communication signal from the communication circuitry and to process the return link communication signal.
    Type: Application
    Filed: September 6, 2007
    Publication date: January 3, 2008
    Inventors: David Ovard, Roy Greeff
  • Publication number: 20070290809
    Abstract: The present invention provides backscatter interrogators, communication systems and backscatter communication methods. According to one aspect of the present invention, a backscatter interrogator includes a data path configured to communicate a data signal; a signal generator configured to generate a carrier signal; and a modulator coupled with the data path and the signal generator, the modulator being configured to spread the data signal to define a spread data signal and amplitude modulate the carrier signal using the spread data signal, the modulator being further configured to phase modulate the carrier signal.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Inventors: David Ovard, Roy Greeff
  • Publication number: 20070293209
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20070290810
    Abstract: The present invention provides backscatter interrogators, communication systems and backscatter communication methods. According to one aspect of the present invention, a backscatter interrogator includes a data path configured to communicate a data signal; a signal generator configured to generate a carrier signal; and a modulator coupled with the data path and the signal generator, the modulator being configured to spread the data signal to define a spread data signal and amplitude modulate the carrier signal using the spread data signal, the modulator being further configured to phase modulate the carrier signal.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Inventors: David Ovard, Roy Greeff