Patents by Inventor David P Bartels

David P Bartels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130293840
    Abstract: A device and method for connecting a camera to a scoping apparatus for viewing and taking photos of an eye-ball or other object imaged by the scoping apparatus. A case receives a compact high-resolution camera, and an attachment is connected to the case. The attachment is detachably connected to an eye-piece of the scoping apparatus in a manner to allow passage of an image from the scoping apparatus through the device to the camera for viewing and taking of photos thereof. A sleeve portion of the attachment and the eye-piece have generally the same diameter to allow the attachment sleeve to be fitted over the eye-piece. When the attachment sleeve and eye-piece have different diameters, an adapter having a generally cylindrical shape and a thickness equal generally to the difference in thicknesses is received on the eye-piece and the attachment sleeve received on the adapter to couple the attachment to the eye-piece.
    Type: Application
    Filed: April 15, 2013
    Publication date: November 7, 2013
    Inventor: David P Bartels
  • Patent number: 8552171
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 8, 2013
    Assignees: University of Massachusetts, Whitehead Insititute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Föderung der Wissenschaften E.V.
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Patent number: 8420391
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: April 16, 2013
    Assignees: University of Massachusetts, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Patent number: 8394628
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 12, 2013
    Assignees: University of Massachusetts, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20120309073
    Abstract: The invention provides budding yeast that have a functional RNAi pathway. The invention provides RNAi pathway polypeptides derived from budding yeast that have an endogenous RNAi pathway. In some embodiments the invention provides functional budding yeast Dicer polypeptides and variants thereof. In some embodiments the invention provides functional budding yeast Argonaute polypeptides and variants thereof. Also provided are isolated nucleic acids encoding the polypeptides of the invention, vectors comprising such nucleic acids, and methods of making the polypeptides and nucleic acids. The invention further provides genetically engineered cells that comprise a functional RNAi pathway polypeptide derived from budding yeast. In some embodiments such cells lack a functional endogenous RNAi pathway and are genetically engineered to have a functional RNAi pathway by introducing nucleic acid(s) encoding one or more functional RNAi pathway polypeptides derived from budding yeast.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 6, 2012
    Applicants: Whitehead Institute for Biomedical Research, of Queen Elizabeth Near Dublin
    Inventors: David P. Bartel, Ines A. Drinnenberg, David E. Weinberg, Kathleen T. Xie, Kenneth H. Wolfe, Gerald Fink
  • Publication number: 20120122111
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: March 9, 2011
    Publication date: May 17, 2012
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Patent number: 8143480
    Abstract: This invention relates to methods for knock-down of a target gene in plants, particularly efficient and specific methods for knock-down of a target gene in plants. This invention also relates to methods for silencing endogenous plant genes or plant pathogen genes. It further relates to nucleic acid constructs (DNA, RNA) which comprise a nucleic acid sequence that corresponds to a target gene or fragment thereof flanked by two complementary sites to an smRNA, e.g., a miRNA (one complementary site is on either side of the nucleic acid sequence), resulting in, for example the configuration: complementary site—nucleic acid sequence that corresponds to a target gene—complementary site.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: March 27, 2012
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Michael Axtell, David P. Bartel
  • Publication number: 20120029061
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: October 4, 2010
    Publication date: February 2, 2012
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20120015042
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: January 18, 2011
    Publication date: January 19, 2012
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20110289611
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: October 4, 2010
    Publication date: November 24, 2011
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20110281931
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: October 4, 2010
    Publication date: November 17, 2011
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20110244568
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: October 4, 2010
    Publication date: October 6, 2011
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20110244446
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: October 4, 2010
    Publication date: October 6, 2011
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20110245318
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: October 4, 2010
    Publication date: October 6, 2011
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20100253535
    Abstract: A key fob is provided that includes a housing, a key function operative with a vehicle ignition for allowing operation of the vehicle, and a communication link for allowing communication between the key fob and the vehicle. The key fob also includes memory storing audio files. The audio files may be downloaded or streamed to a vehicle via the communication link. The memory may further store saved audio file information, such as music identifiers, provided on board the vehicle and downloaded to the key fob upon initiation by a user.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: STEVEN P. THOMAS, DAVID P. BARTEL
  • Publication number: 20090186843
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: July 19, 2007
    Publication date: July 23, 2009
    Applicants: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, University of Massachusetts Medical Center, Max-Planck-Gesellschaft zur Forderung der Wissenschaften E.V.
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Publication number: 20090172838
    Abstract: This invention relates to methods for knock-down of a target gene in plants, particularly efficient and specific methods for knock-down of a target gene in plants. This invention also relates to methods for silencing endogenous plant genes or plant pathogen genes. It further relates to nucleic acid constructs (DNA, RNA) which comprise a nucleic acid sequence that corresponds to a target gene or fragment thereof flanked by two complementary sites to an smRNA, e.g., a miRNA (one complementary site is on either side of the nucleic acid sequence), resulting in, for example the configuration: complementary site—nucleic acid sequence that corresponds to a target gene—complementary site.
    Type: Application
    Filed: October 19, 2007
    Publication date: July 2, 2009
    Applicant: Whitehead Institute for Biomedical Research
    Inventors: Michael Axtell, David P. Bartel
  • Publication number: 20080132461
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Application
    Filed: July 19, 2007
    Publication date: June 5, 2008
    Applicants: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, University of Massachusetts Medical Center, Max-Planck-Gesellschaft zur Forderung der
    Inventors: Thomas Tuschi, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Patent number: 6716973
    Abstract: Engineered mRNA useful in producing libraries of engineered mRNAs, polypeptide-engineered mRNA conjugates and diverse encoded polypeptide libraries, as well as novel ribozymes that join an mRNA to the translation product of the mRNA and methods of identifying members of diverse encoded polypeptide libraries which exhibit a desired activity. Also described are polypeptide-nucleic acid tag conjugates, methods of producing the conjugates and uses therefor.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 6, 2004
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Donald Scott Baskerville, David P. Bartel
  • Publication number: 20040038273
    Abstract: Disclosed are tRNA analogues which comprise a tRNA, such as tRNAphe; a nonstandard amino acid moiety which acts as an acceptor substrate, but not as a donor substrate, for ribosome-directed nonstandard polymer transfer and, thus, is stably linked to the acceptor stem of the tRNA; and a reactive or activatible moiety near or within the anticodon stem loop of the tRNA that can medidate the covalent coupling of the tRNA analogue to mRNA. Also disclosed are nonstandard polymer-tRNA analogue-mRNA fusions; libraries of encoded nonstandard polymers; methods of producing and screening the libraries; and target members and their uses.
    Type: Application
    Filed: June 17, 2003
    Publication date: February 26, 2004
    Applicant: Whitehead Institute for Biomedical Research
    Inventors: Charles E. Merryman, David P. Bartel