Patents by Inventor David P. Craig

David P. Craig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9284829
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to simulating subterranean fracture propagation. A subterranean formation model representing rock blocks of a subterranean formation is received. The subterranean formation model is used to predict a response of each rock block to one or more forces acting on the rock block during an injection treatment for the subterranean formation. The predicted responses of the rock blocks may include, for example, a fracture, a rotation, a displacement, a dilation of an existing fracture, and/or another type of response. In some implementations, an injection treatment may be designed for a subterranean formation based on the predicted response of the rock blocks.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 15, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 9176245
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to refining information on characteristics of natural fractures of a subterranean formation. Fracture pattern models are generated based on sampling an initial distribution of values for a fracture parameter. Each fracture pattern model may include, for example, a model of natural fractures in a subterranean formation. Each fracture pattern model is compared to microseismic event data for a subterranean region. A refined distribution for the fracture parameter is generated based on the comparison. Generating the refined distribution may include, for example, selecting values of the fracture parameter from fracture pattern models that correlate with the microseismic event data. In some implementations, an injection treatment may be simulated and/or designed based on the refined distribution.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 8898044
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to simulating subterranean fracture propagation. A subterranean formation model representing rock blocks of a subterranean formation is received. The subterranean formation model is used to predict a response of each rock block to one or more forces acting on the rock block during an injection treatment for the subterranean formation. The predicted responses of the rock blocks may include, for example, a fracture, a rotation, a displacement, a dilation of an existing fracture, and/or another type of response. In some implementations, an injection treatment may be designed for a subterranean formation based on the predicted response of the rock blocks.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 25, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 8794316
    Abstract: Quantitative refracture diagnostic and fracture-injection/falloff models may be used in methods for oil and gas subsurface formation evaluation techniques. More particularly, such methods may be used to select candidate wells and well candidate layers for stimulation treatments in a subterranean formation. An example of a method for selecting well candidate layers for stimulation treatments in a subterranean formation may comprise the steps of: selecting a candidate well; selecting a reservoir layer to be tested; performing a quantitative refracture-candidate diagnostic test on the reservoir layer; determining at least one reservoir property of the reservoir layer using the quantitative refracture-candidate diagnostic test; and modeling a proposed stimulation treatment using the at least one reservoir property in a reservoir simulation model so as to predict the efficacy of the proposed stimulation treatment.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: August 5, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 8437962
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to generating probabilistic information on characteristics of natural fractures of a subterranean formation. Fitted fracture models are generated based on microseismic event data for a subterranean region. The fitted fracture models represent estimated locations of fractures in the subterranean region. A distribution of fracture parameter values is generated based on the fitted fracture models. The distribution includes fracture parameter values and a probability associated with each fracture parameter value. Generating the fitted fracture models may include, for example, fitting a plane, a line or another type of equation to the measured locations of microseismic events. In some implementations, an injection treatment may be simulated and/or designed based on the probability distribution.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: May 7, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 8392165
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to generating a model of a subterranean formation based on a probabilistic earth model. An earth model including a probability distribution for a property of a subterranean region is received. A subterranean formation model is generated based on sampling the probability distribution for the property. The subterranean formation model includes information on boundaries of rock blocks of a formation in the subterranean region. The subterranean formation model may be used for simulating an injection treatment applied to the formation, for example, to predict fracture propagation in the formation. In some implementations, the subterranean formation model may be used for designing an injection treatment for the formation.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 5, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David P. Craig, Michael J. Eberhard
  • Patent number: 8386226
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to stochastic simulation of subterranean fracture propagation. A plurality of subterranean formation models, each representing a subterranean formation, are analyzed to obtain information on predicted results of applying an injection treatment to the subterranean formation. Each of the analyzed subterranean formation models is generated by simulating forces acting on rock blocks of the subterranean formation during the injection treatment. Each simulation has an input parameter value determined for that simulation based on sampling a distribution of values for a characteristic of the subterranean formation. The characteristic may include, for example, a natural fracture parameter. The information on the predicted results of applying the injection treatment may include, for example, an output probability distribution.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: February 26, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Publication number: 20130006597
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to simulating subterranean fracture propagation. A subterranean formation model representing rock blocks of a subterranean formation is received. The subterranean formation model is used to predict a response of each rock block to one or more forces acting on the rock block during an injection treatment for the subterranean formation. The predicted responses of the rock blocks may include, for example, a fracture, a rotation, a displacement, a dilation of an existing fracture, and/or another type of response. In some implementations, an injection treatment may be designed for a subterranean formation based on the predicted response of the rock blocks.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Publication number: 20110120718
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to simulating subterranean fracture propagation. A subterranean formation model representing rock blocks of a subterranean formation is received. The subterranean formation model is used to predict a response of each rock block to one or more forces acting on the rock block during an injection treatment for the subterranean formation. The predicted responses of the rock blocks may include, for example, a fracture, a rotation, a displacement, a dilation of an existing fracture, and/or another type of response. In some implementations, an injection treatment may be designed for a subterranean formation based on the predicted response of the rock blocks.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Publication number: 20110125471
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to generating a model of a subterranean formation based on a probabilistic earth model. An earth model including a probability distribution for a property of a subterranean region is received. A subterranean formation model is generated based on sampling the probability distribution for the property. The subterranean formation model includes information on boundaries of rock blocks of a formation in the subterranean region. The subterranean formation model may be used for simulating an injection treatment applied to the formation, for example, to predict fracture propagation in the formation. In some implementations, the subterranean formation model may be used for designing an injection treatment for the formation.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: Halliburton Energy Services, Inc.
    Inventors: David P. Craig, Michael J. Eberhard
  • Publication number: 20110125476
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to stochastic simulation of subterranean fracture propagation. A plurality of subterranean formation models, each representing a subterranean formation, are analyzed to obtain information on predicted results of applying an injection treatment to the subterranean formation. Each of the analyzed subterranean formation models is generated by simulating forces acting on rock blocks of the subterranean formation during the injection treatment. Each simulation has an input parameter value determined for that simulation based on sampling a distribution of values for a characteristic of the subterranean formation. The characteristic may include, for example, a natural fracture parameter. The information on the predicted results of applying the injection treatment may include, for example, an output probability distribution.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Publication number: 20110120702
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to generating probabilistic information on characteristics of natural fractures of a subterranean formation. Fitted fracture models are generated based on microseismic event data for a subterranean region. The fitted fracture models represent estimated locations of fractures in the subterranean region. A distribution of fracture parameter values is generated based on the fitted fracture models. The distribution includes fracture parameter values and a probability associated with each fracture parameter value. Generating the fitted fracture models may include, for example, fitting a plane, a line or another type of equation to the measured locations of microseismic events. In some implementations, an injection treatment may be simulated and/or designed based on the probability distribution.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 26, 2011
    Applicant: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Publication number: 20110120706
    Abstract: Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to refining information on characteristics of natural fractures of a subterranean formation. Fracture pattern models are generated based on sampling an initial distribution of values for a fracture parameter. Each fracture pattern model may include, for example, a model of natural fractures in a subterranean formation. Each fracture pattern model is compared to microseismic event data for a subterranean region. A refined distribution for the fracture parameter is generated based on the comparison. Generating the refined distribution may include, for example, selecting values of the fracture parameter from fracture pattern models that correlate with the microseismic event data. In some implementations, an injection treatment may be simulated and/or designed based on the refined distribution.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 7774140
    Abstract: A refracture-candidate diagnostic test is an injection of compressible or slightly compressible fluid at pressures in excess of minimum in-situ stress and formation fracture pressure with pressure decline following injection test recorded to detect a fracture retaining residual width from previous stimulation treatments. The diagnostic consists of small volume injections with injection time being a small fraction of time required for compressible or slightly compressible reservoir fluid to exhibit pseudoradial flow. The fracture-injection portion of a test can be considered as occurring instantaneously. Data measurements are transformed into a constant rate equivalent pressure transformation to obtain adjusted pressures or adjusted pseudovariables which are analyzed to identify dual unit-slope before and after closure periods confirming a residual retaining width.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: August 10, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 7389185
    Abstract: Methods and systems are provided for evaluating subsurface earth oil and gas formations. More particularly, methods and systems are provided for determining reservoir properties such as reservoir transmissibilities and average reservoir pressures of formation layer(s) using quantitative refracture-candidate diagnostic methods. The methods herein may use pressure falloff data from the introduction of an injection fluid at a pressure above the formation fracture pressure to analyze reservoir properties. The model recognizes that a new induced fracture creates additional storage volume in the formation and that a quantitative refracture-candidate diagnostic test in a layer may exhibit variable storage during the pressure falloff, and a change in storage may be observed at hydraulic fracture closure.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 17, 2008
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 7272973
    Abstract: Methods and systems are provided for evaluating subsurface earth oil and gas formations. More particularly, methods and systems are provided for determining reservoir properties such as reservoir transmissibilities and average reservoir pressures of a formation layer or multiple layers using fracture-injection/falloff test methods. The methods herein may use pressure falloff data generated by the introduction of an injection fluid at a pressure above the formation fracture pressure in conjunction with a fracture-injection/falloff test model to analyze reservoir properties. The fracture-injection/falloff test model recognizes that a new induced fracture creates additional storage volume in the formation and that a fracture-injection/falloff test in a layer may exhibit variable storage during the pressure falloff, and a change in storage may be observed at hydraulic fracture closure.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 25, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 7054751
    Abstract: A before-closure pressure-transient leakoff analysis for a fracture-injection/falloff test is used to mitigate the detrimental effects of pressure-dependent fluid properties on the evaluation of physical parameters of a reservoir. A fracture-injection/falloff test consists of an injection of liquid, gas, or a combination (foam, emulsion, etc.) containing desirable additives for compatibility with the formation at an injection pressure exceeding the formation fracture pressure followed by a shut-in period. The pressure falloff during the shut-in period is measured and analyzed to determine permeability and fracture-face resistance by preparing a specialized Cartesian graph from the shut-in data using adjusted pseudodata such as adjusted pseudopressure data and time as variables in a first method, and adjusted pseudopressure and adjusted pseudotime data as variables in a second method.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 30, 2006
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 4719266
    Abstract: The use of metal salts in vulcanizable elastomer compounds is described. In sufficient amounts, the metal salts function as both vulcanization accelerators and adhesion promoters for rubber to metal adhesion, thus eliminating the need for a separate ingredient for each purpose. Certain of the salts also promote the adhesion of the elastomer to metal adherends which have heretofore been unknown, for example, to a zinc surface. Curing characteristics of elastomer formulations using the metal salts are comparable to those using prior art accelerators.
    Type: Grant
    Filed: July 22, 1986
    Date of Patent: January 12, 1988
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: David P. Craig