Patents by Inventor David P. Duncan

David P. Duncan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230270417
    Abstract: Ultrasound beamformer-based channel data compression allows for software-based image formation. To increase the amount of data transferred, ultrasound beamformer-based channel data compression is provided. A beamformer is used to compress instead of or in addition to traditional beamformation. The compression reduces the data bandwidth while allowing reconstruction of the original channel data.
    Type: Application
    Filed: May 10, 2023
    Publication date: August 31, 2023
    Inventor: David P. Duncan
  • Patent number: 11684346
    Abstract: Ultrasound beamformer-based channel data compression allows for software-based image formation. To increase the amount of data transferred, ultrasound beamformer-based channel data compression is provided. A beamformer is used to compress instead of or in addition to traditional beamformation. The compression reduces the data bandwidth while allowing reconstruction of the original channel data.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: June 27, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: David P. Duncan
  • Publication number: 20220257216
    Abstract: By identifying locations of contrast agent response, an intensity-based metric of contrast agent signal is used to control a duration of microbubble destruction with a medical ultrasound scanner. Feedback from motion of the transducer may be used to indicate when a user perceives enough destruction. A combination of both an intensity-based metric and transducer motion may be used to control the duration of bursting.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: David P. Duncan, Gilles D. Guenette, Ismayil M. Guracar
  • Patent number: 11357477
    Abstract: By identifying locations of contrast agent response, an intensity-based metric of contrast agent signal is used to control a duration of microbubble destruction with a medical ultrasound scanner. Feedback from motion of the transducer may be used to indicate when a user perceives enough destruction. A combination of both an intensity-based metric and transducer motion may be used to control the duration of bursting.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: June 14, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: David P. Duncan, Gilles D. Guenette, Ismayil M. Guracar
  • Patent number: 10799208
    Abstract: For sound speed imaging, different receive apertures are used instead of multiple transmissions from different angles. Acoustic echoes from a same transmission are receive beamformed with different apertures of the transducer array. The axial shift between the beamformed signals from the different apertures is used to solve for the speed of sound at one or more locations. The resulting measure of the speed of sound is displayed as the speed of sound in the tissue and may be diagnostically or prognostically useful.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: October 13, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: David P. Duncan, Yassin Labyed
  • Publication number: 20200077982
    Abstract: By identifying locations of contrast agent response, an intensity-based metric of contrast agent signal is used to control a duration of microbubble destruction with a medical ultrasound scanner. Feedback from motion of the transducer may be used to indicate when a user perceives enough destruction. A combination of both an intensity-based metric and transducer motion may be used to control the duration of bursting.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 12, 2020
    Inventors: David P. Duncan, Gilles D. Guenette, Ismayil M. Guracar
  • Patent number: 10456116
    Abstract: Shadow suppression is provided in ultrasound imaging, such as in steered spatial compounding. Using a transform or other approach, the data of a frame of data along the steering direction is projected. The projection is used to determine weights. The frame is weighted with the projection-based weights, reducing or removing shadows based on the one frame rather than based on registration with other frames. In the steered spatial compounding example, a compounded frame with independently shadow suppressed component frames may have little or no fork-like image artifacts due to shadowing.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 29, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: David P. Duncan, Manoj G. Menon
  • Patent number: 10376240
    Abstract: In contrast agent imaging, a beamformer and transducer scan a region of a patient having contrast agents. A detector detects the contrast agents with at least two different contrast agent imaging techniques from ultrasound data resulting from the scanning. A processor compares responses of the contrast agents detected between the at least two different contrast agent imaging techniques and selects a relative contribution of the at least two different contrast agent imaging techniques. The selection is based on the comparing. Contrast agent imaging of the patient is performed using at least one of the contrast agent imaging techniques. The performance is based on the selected relative contribution.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 13, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: David P. Duncan, Xiaozheng Zeng, Ismayil M. Guracar
  • Patent number: 10159466
    Abstract: Sparse tracking is used in acoustic radiation force impulse imaging. The tracking is performed sparsely. The displacements are measured only one or a few times for each receive line. While this may result in insufficient information to determine the displacement phase shift and/or maximum displacement over time, the resulting displacement samples for different receive lines as a function of time may be used together to estimate the velocity, such as with a Radon transform. The estimation may be less susceptible to noise from the scarcity of displacement samples by using compressive sensing.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: December 25, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Yassin Labyed, David P. Duncan, Stephen J. Hsu, Seungsoo Kim, Liexiang Fan
  • Publication number: 20180153516
    Abstract: Sparse tracking is used in acoustic radiation force impulse imaging. The tracking is performed sparsely. The displacements are measured only one or a few times for each receive line. While this may result in insufficient information to determine the displacement phase shift and/or maximum displacement over time, the resulting displacement samples for different receive lines as a function of time may be used together to estimate the velocity, such as with a Radon transform. The estimation may be less susceptible to noise from the scarcity of displacement samples by using compressive sensing.
    Type: Application
    Filed: January 17, 2018
    Publication date: June 7, 2018
    Inventors: Yassin Labyed, David P. Duncan, Stephen J. Hsu, Seungsoo Kim, Liexiang Fan
  • Publication number: 20180125451
    Abstract: For sound speed imaging, different receive apertures are used instead of multiple transmissions from different angles. Acoustic echoes from a same transmission are receive beamformed with different apertures of the transducer array. The axial shift between the beamformed signals from the different apertures is used to solve for the speed of sound at one or more locations. The resulting measure of the speed of sound is displayed as the speed of sound in the tissue and may be diagnostically or prognostically useful.
    Type: Application
    Filed: September 11, 2017
    Publication date: May 10, 2018
    Inventors: David P. Duncan, Yassin Labyed
  • Patent number: 9907539
    Abstract: Sparse tracking is used in acoustic radiation force impulse imaging. The tracking is performed sparsely. The displacements are measured only one or a few times for each receive line. While this may result in insufficient information to determine the displacement phase shift and/or maximum displacement over time, the resulting displacement samples for different receive lines as a function of time may be used together to estimate the velocity, such as with a Radon transform. The estimation may be less susceptible to noise from the scarcity of displacement samples by using compressive sensing.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 6, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Yassin Labyed, David P. Duncan, Stephen J. Hsu, Seungsoo Kim, Liexiang Fan
  • Publication number: 20160349367
    Abstract: Ultrasound beamformer-based channel data compression allows for software-based image formation. To increase the amount of data transferred, ultrasound beamformer-based channel data compression is provided. A beamformer is used to compress instead of or in addition to traditional beamformation. The compression reduces the data bandwidth while allowing reconstruction of the original channel data.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 1, 2016
    Inventor: David P. Duncan
  • Publication number: 20160331350
    Abstract: In contrast agent imaging, a beamformer and transducer scan a region of a patient having contrast agents. A detector detects the contrast agents with at least two different contrast agent imaging techniques from ultrasound data resulting from the scanning. A processor compares responses of the contrast agents detected between the at least two different contrast agent imaging techniques and selects a relative contribution of the at least two different contrast agent imaging techniques. The selection is based on the comparing. Contrast agent imaging of the patient is performed using at least one of the contrast agent imaging techniques. The performance is based on the selected relative contribution.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: David P. Duncan, Xiaozheng Zeng, Ismayil M. Guracar
  • Publication number: 20160228096
    Abstract: In ARFI imaging, a cost function is used to identify a time of displacement that best or sufficiently indicates the desired information. For example, the displacements associated with a combination of contrast and signal-to-noise ratio are identified. The time at which the desired displacements occur may be other than the time of the maximum. Since the time is common to displacements for one or more scan lines, the displacement image may be assembled line-by-line or by groups of lines.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 11, 2016
    Inventors: Seungsoo Kim, Liexiang Fan, Nikolas M. Ivancevich, David P. Duncan
  • Publication number: 20160199034
    Abstract: Sparse tracking is used in acoustic radiation force impulse imaging. The tracking is performed sparsely. The displacements are measured only one or a few times for each receive line. While this may result in insufficient information to determine the displacement phase shift and/or maximum displacement over time, the resulting displacement samples for different receive lines as a function of time may be used together to estimate the velocity, such as with a Radon transform. The estimation may be less susceptible to noise from the scarcity of displacement samples by using compressive sensing.
    Type: Application
    Filed: January 12, 2015
    Publication date: July 14, 2016
    Inventors: Yassin Labyed, David P. Duncan, Stephen J. Hsu, Seungsoo Kim, Liexiang Fan
  • Patent number: 9332962
    Abstract: In ARFI imaging, a cost function is used to identify a time of displacement that best or sufficiently indicates the desired information. For example, the displacements associated with a combination of contrast and signal-to-noise ratio are identified. The time at which the desired displacements occur may be other than the time of the maximum. Since the time is common to displacements for one or more scan lines, the displacement image may be assembled line-by-line or by groups of lines.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 10, 2016
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Seungsoo Kim, Liexiang Fan, Nikolas M. Ivancevich, David P. Duncan
  • Publication number: 20160089116
    Abstract: Shadow suppression is provided in ultrasound imaging, such as in steered spatial compounding. Using a transform or other approach, the data of a frame of data along the steering direction is projected. The projection is used to determine weights. The frame is weighted with the projection-based weights, reducing or removing shadows based on the one frame rather than based on registration with other frames. In the steered spatial compounding example, a compounded frame with independently shadow suppressed component frames may have little or no fork-like image artifacts due to shadowing.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: David P. Duncan, Manoj G. Menon
  • Publication number: 20140276046
    Abstract: In ARFI imaging, a cost function is used to identify a time of displacement that best or sufficiently indicates the desired information. For example, the displacements associated with a combination of contrast and signal-to-noise ratio are identified. The time at which the desired displacements occur may be other than the time of the maximum. Since the time is common to displacements for one or more scan lines, the displacement image may be assembled line-by-line or by groups of lines.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Seungsoo Kim, Liexiang Fan, Nikolas M. Ivancevich, David P. Duncan
  • Patent number: 8801614
    Abstract: Shear wave imaging is provided in medical diagnostic ultrasound. The generation of a shear wave with acoustic energy forms a pseudo shear wave (an apparent wave) traveling towards the transducer. Transmission and reception along a single line may be used to detect the pseudo shear wave traveling towards the transducer. The shear velocity or characteristic may be determined without reception along multiple laterally spaced scan lines. One transmission to generate the shear wave may be used. With multi-beam receive or without, calculating shear velocity from along a single line allows rapid determination.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: August 12, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Stephen J. Hsu, Manoj G. Menon, David P. Duncan