Patents by Inventor David P. Olson

David P. Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190358395
    Abstract: A mechanism for transferring energy from an external power source to an implantable medical device is disclosed. A sensor may be used to measure a parameter that correlates to a temperature of the system that occurs during the transcutaneous coupling of energy. For example, the sensor may measure temperature of a surface of an antenna of the external power source. The measured parameter may then be compared to a programmable limit. A control circuit such as may be provided by the external power source may then control the temperature based on the comparison. The programmable limit may be, for example, under software control so that the temperature occurring during transcutaneous coupling of energy may be modified to fit then-current circumstances.
    Type: Application
    Filed: June 24, 2019
    Publication date: November 28, 2019
    Inventors: David P. Olson, William C. Phillips, Andrew L. Schmeling
  • Patent number: 10369275
    Abstract: A mechanism for transferring energy from an external power source to an implantable medical device is disclosed. A sensor may be used to measure a parameter that correlates to a temperature of the system that occurs during the transcutaneous coupling of energy. For example, the sensor may measure temperature of a surface of an antenna of the external power source. The measured parameter may then be compared to a programmable limit. A control circuit such as may be provided by the external power source may then control the temperature based on the comparison. The programmable limit may be, for example, under software control so that the temperature occurring during transcutaneous coupling of energy may be modified to fit then-current circumstances.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: August 6, 2019
    Assignee: Medtronic, Inc.
    Inventors: David P. Olson, William C. Phillips, Andrew L. Schmeling
  • Publication number: 20190190296
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 10322288
    Abstract: Devices, systems, and techniques for managing heat generated in coils for wireless energy transmission are disclosed. Inductive coupling between two coils may be used to recharge the power source of an implantable medical device. A phase change material may be thermally coupled to a flexible coil to absorb heat generated during the inductive coupling and reduce temperature increases of the flexible coil. The flexible coil may be configured to at least one of transmit energy to or receive energy from a second coil, and the phase change material may be configured to deform with the flexible coil and absorb heat from the flexible coil. The phase change material may be contained within thermally conductive tubes or channels configured in shapes that promote flexibility of the flexible coil.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: June 18, 2019
    Assignee: Medtronic, Inc.
    Inventors: Todd A. Kallmyer, John E. Kast, David P. Olson, Randy S. Roles, Venkat R. Gaddam
  • Publication number: 20190115793
    Abstract: Far field telemetry operations are conducted between an external device and an implantable medical device while power is being transferred to the implantable medical device for purposes of recharging a battery of the implantable medical device. The far field operations may include exchanging recharge information that has been collected by the implantable medical device which allows the external device to exercise control over the recharge process. The far field operations may include suspending far field telemetry communications for periods of time while power continues to be transferred where suspending far field telemetry communications may include powering down far field telemetry communication circuits of the implantable medical device for periods of time which may conserve energy. The far field operations may further include transferring programming instructions to the implantable medical device.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 18, 2019
    Inventors: David P. Olson, William C. Phillips, Garrett R. Sipple, Yu Wang
  • Patent number: 10226636
    Abstract: Devices, systems, and techniques for estimating energy transfer to tissue of a patient during battery charging for an implantable medical device are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. An external charging device may calculate an estimated energy transfer to tissue of the patient that may include a resistive heat loss from the rechargeable power source and/or electromagnetic energy transfer directly to tissue. Based on the estimated energy transfer, the external charging device may select a power level for charging of the rechargeable power source. In one example, the charging device may select a high power level when the estimated energy transfer has not exceeded an energy transfer threshold and select a low power level when the estimated energy transfer has exceeded the energy transfer threshold.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Venkat R. Gaddam, Reid K. Bornhoft, David P. Olson, Prabhakar A. Tamirisa
  • Patent number: 10177609
    Abstract: Far field telemetry operations are conducted between an external device and an implantable medical device while power is being transferred to the implantable medical device for purposes of recharging a battery of the implantable medical device. The far field operations may include exchanging recharge information that has been collected by the implantable medical device which allows the external device to exercise control over the recharge process. The far field operations may include suspending far field telemetry communications for periods of time while power continues to be transferred where suspending far field telemetry communications may include powering down far field telemetry communication circuits of the implantable medical device for periods of time which may conserve energy. The far field operations may further include transferring programming instructions to the implantable medical device.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: January 8, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: David P. Olson, William C. Phillips, Garrett R. Sipple, Yu Wang
  • Publication number: 20180333585
    Abstract: Devices, systems, and techniques for controlling charging power transmitted to an implantable medical device during a recharging process based on patient activity are disclosed. Various example techniques include a method comprising receiving, by processing circuitry, an activity signal generated by an implantable medical device and indicative of an activity level of a patient during charging of a rechargeable power source of the implantable medical device implanted in the patient, determining, by the processing circuitry and based on the activity signal, a patient status for the patient during charging of the rechargeable power source, and controlling, by the processing circuitry and based on the patient status, charging of the rechargeable power source of the implantable medical device.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 22, 2018
    Inventors: Venkat R. Gaddam, Reid K. Bornhoft, David P. Olson, Leroy L. Perz, Mandla Shongwe
  • Publication number: 20180159361
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 7, 2018
    Inventors: Peng Cong, Venkat R. Gaddam, David P. Olson, Erik R. Scott, Todd V. Smith, Leroy L. Perz
  • Publication number: 20180043167
    Abstract: Devices, systems, and techniques for estimating energy transfer to tissue of a patient during battery charging for an implantable medical device are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. An external charging device may calculate an estimated energy transfer to tissue of the patient that may include a resistive heat loss from the rechargeable power source and/or electromagnetic energy transfer directly to tissue. Based on the estimated energy transfer, the external charging device may select a power level for charging of the rechargeable power source. In one example, the charging device may select a high power level when the estimated energy transfer has not exceeded an energy transfer threshold and select a low power level when the estimated energy transfer has exceeded the energy transfer threshold.
    Type: Application
    Filed: April 22, 2016
    Publication date: February 15, 2018
    Inventors: Venkat R. Gaddam, Reid K. Bornhoft, David P. Olson, Prabhakar A. Tamirisa
  • Publication number: 20180036477
    Abstract: A mechanism for transferring energy from an external power source to an implantable medical device is disclosed. A sensor may be used to measure a parameter that correlates to a temperature of the system that occurs during the transcutaneous coupling of energy. For example, the sensor may measure temperature of a surface of an antenna of the external power source. The measured parameter may then be compared to a programmable limit. A control circuit such as may be provided by the external power source may then control the temperature based on the comparison. The programmable limit may be, for example, under software control so that the temperature occurring during transcutaneous coupling of energy may be modified to fit then-current circumstances.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: David P. Olson, William C. Phillips, Andrew L. Schmeling
  • Patent number: 9882420
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: January 30, 2018
    Assignee: Medtronic, Inc.
    Inventors: Peng Cong, Venkat R. Gaddam, David P. Olson, Erik R. Scott, Todd V. Smith, Leroy L. Perz
  • Patent number: 9821112
    Abstract: A mechanism for transferring energy from an external power source to an implantable medical device is disclosed. A sensor may be used to measure a parameter that correlates to a temperature of the system that occurs during the transcutaneous coupling of energy. For example, the sensor may measure temperature of a surface of an antenna of the external power source. The measured parameter may then be compared to a programmable limit. A control circuit such as may be provided by the external power source may then control the temperature based on the comparison. The programmable limit may be, for example, under software control so that the temperature occurring during transcutaneous coupling of energy may be modified to fit then-current circumstances.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: November 21, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: David P. Olson, William C. Phillips, Andrew L. Schmeling
  • Publication number: 20170317518
    Abstract: Far field telemetry operations are conducted between an external device and an implantable medical device while power is being transferred to the implantable medical device for purposes of recharging a battery of the implantable medical device. The far field operations may include exchanging recharge information that has been collected by the implantable medical device which allows the external device to exercise control over the recharge process. The far field operations may include suspending far field telemetry communications for periods of time while power continues to be transferred where suspending far field telemetry communications may include powering down far field telemetry communication circuits of the implantable medical device for periods of time which may conserve energy. The far field operations may further include transferring programming instructions to the implantable medical device.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 2, 2017
    Inventors: David P. Olson, William C. Phillips, Garrett R. Sipple, Yu Wang
  • Patent number: 9729001
    Abstract: Far field telemetry operations are conducted between an external device and an implantable medical device while power is being transferred to the implantable medical device for purposes of recharging a battery of the implantable medical device. The far field operations may include exchanging recharge information that has been collected by the implantable medical device which allows the external device to exercise control over the recharge process. The far field operations may include suspending far field telemetry communications for periods of time while power continues to be transferred where suspending far field telemetry communications may include powering down far field telemetry communication circuits of the implantable medical device for periods of time which may conserve energy. The far field operations may further include transferring programming instructions to the implantable medical device.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: August 8, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: David P. Olson, William C. Phillips, Garrett R. Sipple, Yu Wang
  • Publication number: 20170194810
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Peng Cong, Venkat R. Gaddam, David P. Olson, Erik R. Scott, Todd V. Smith, Leroy L. Perz
  • Patent number: 9653935
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: May 16, 2017
    Assignee: Medtronic, Inc.
    Inventors: Peng Cong, Venkat R. Gaddam, David P. Olson, Erik R. Scott, Todd V. Smith, Leroy L. Perz
  • Patent number: 9623257
    Abstract: Techniques are disclosed for tuning a frequency at which an external device transcutaneously transfers energy. The transferred energy may be used to charge a rechargeable power source of an implantable medical device (IMD) and/or to power the IMD directly. One embodiment relates to a charging system that may comprise a circuit to drive a primary coil of an external device at a drive frequency and a control circuit to tune the drive frequency based on a characteristic of a monitored signal that is associated with the primary coil. The characteristic is not present when the primary coil is being driven at a resonant frequency of the system. In a specific example, the characteristic comprises a stub pulse and the control circuit is configured to tune the drive frequency based on at least one of a relative timing and a width of the stub pulse.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: April 18, 2017
    Assignee: Medtronic, Inc.
    Inventors: David P. Olson, Nicholas A. Delisi, Jay T. Eisch, Philip R. LaBrosse, Joseph J. Nolan
  • Patent number: 9601939
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 21, 2017
    Assignee: Medtronic, Inc.
    Inventors: Peng Cong, Venkat R. Gaddam, David P. Olson, Erik R. Scott, Todd V. Smith, Leroy L. Perz
  • Publication number: 20170065766
    Abstract: A mechanism for transferring energy from an external power source to an implantable medical device is disclosed. A sensor may be used to measure a parameter that correlates to a temperature of the system that occurs during the transcutaneous coupling of energy. For example, the sensor may measure temperature of a surface of an antenna of the external power source. The measured parameter may then be compared to a programmable limit. A control circuit such as may be provided by the external power source may then control the temperature based on the comparison. The programmable limit may be, for example, under software control so that the temperature occurring during transcutaneous coupling of energy may be modified to fit then-current circumstances.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 9, 2017
    Inventors: David P. Olson, William C. Phillips, Andrew L. Schmeling