Patents by Inventor David P. Trauernicht

David P. Trauernicht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8864287
    Abstract: A method of ejecting a drop of fluid includes providing a fluid ejector. The fluid ejector includes a substrate, a MEMS transducing member, a compliant membrane, walls, and a nozzle. The substrate includes a cavity and a fluidic feed. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member, A second portion of the compliant membrane being anchored to the substrate. Walls define a chamber that is fluidically connected to the fluidic feed. At least the second portion of the MEMS transducing member is enclosed within the chamber. A quantity of fluid is supplied to the chamber through the fluidic feed.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: October 21, 2014
    Assignee: Eastman Kodak Company
    Inventors: James D. Huffman, Christopher N. Delametter, David P. Trauernicht
  • Publication number: 20140216790
    Abstract: A conductive micro-wire structure includes a substrate and a plurality of micro-wires formed on or in the substrate in an intersecting pattern and forming intersection corners. A portion of a first micro-wire is coincident with a portion of a second micro-wire to form a coincident portion such that the coincident portion is non-visually resolvable by the human visual system and the coincident portion has a length greater than the sum of the widths of the first and second micro-wires or has one or more rounded intersection corners.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Inventors: David P. Trauernicht, John A. Lebens, Yongcai Wang
  • Publication number: 20140216783
    Abstract: A pattern of electrically connected micro-wires comprises a plurality of micro-wires arranged in an intersecting pattern forming intersection corners. A portion of a first micro-wire is coincident with a portion of a second micro-wire to form a coincident portion such that the coincident portion is non-visually resolvable by the human visual system and the coincident portion has a length greater than the sum of the widths of the first and second micro-wires or has at least one rounded intersection corner.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Inventors: David P. Trauernicht, John A. Lebens, Yongcai Wang
  • Patent number: 8591008
    Abstract: A printer includes a printhead die including liquid ejectors separated by walls. Each liquid ejector includes a nozzle orifice and an associated drop forming mechanism. First and second liquid feed channels, extending in opposite directions, are in fluid communication with each liquid ejector. A liquid inlet includes a plurality of first and second segments in fluid communication with the first liquid feed channels and the second liquid feed channels, respectively. The first and second segments are located on opposite sides of the nozzle orifice. For a given liquid ejector, both of the first and second segments are directly in line with the liquid ejector. An electrical lead extends from each drop forming mechanism toward an edge of the printhead die. At least one of the electrical leads is positioned between neighboring segments of at least one of the first and second segments of the liquid inlet.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 26, 2013
    Assignee: Eastman Kodak Company
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 8540349
    Abstract: A liquid ejector includes a substrate, a heating element, a dielectric material layer, and a chamber. The substrate includes a first surface. The heating element is located over the first surface of the substrate such that a cavity exists between the heating element and the first surface of the substrate. The dielectric material layer is located between the heating element and the cavity such that the cavity is laterally bounded by the dielectric material layer. The chamber, including a nozzle, is located over the heating element. The chamber is shaped to receive a liquid with the cavity being isolated from the liquid.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 24, 2013
    Assignee: Eastman Kodak Company
    Inventors: John A. Lebens, Christopher N. Delametter, David P. Trauernicht, Emmanuel K. Dokyi, Weibin Zhang
  • Patent number: 8529021
    Abstract: A method of continuously ejecting liquid includes providing a liquid ejection system that includes a substrate and an orifice plate affixed to the substrate. Portions of the substrate define a liquid chamber. The orifice plate includes a MEMS transducing member that extends over at least a portion of the liquid chamber. A compliant membrane is positioned in contact with the MEMS transducing member. The compliant membrane includes an orifice. Liquid is provided under a pressure sufficient to eject a continuous jet of the liquid through the orifice located in the compliant membrane of the orifice plate by a liquid supply. A drop of liquid is caused to break off from the liquid jet by selectively actuating the MEMS transducing member which causes a portion of the compliant membrane to be displaced relative to the liquid chamber.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: September 10, 2013
    Assignee: Eastman Kodak Company
    Inventors: Michael F. Baumer, James D. Huffman, Hrishikesh V. Panchawagh, Jeremy M. Grace, Yonglin Xie, Qing Yang, David P. Trauernicht, John A. Lebens
  • Patent number: 8496318
    Abstract: A liquid ejector includes a structure defining a plurality of chambers with one of the chambers including a first and second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. First and second liquid feed channels are in fluid communication with the chamber. First and second segments of a segmented liquid inlet are in fluid communication with the first and second liquid feed channels, respectively. The first and second segments of the segmented liquid inlet are also in fluid communication with another one of the plurality of chambers. Liquid is provided to the chamber through the first and second liquid feed channels from the segmented liquid inlet. A drop of the liquid is ejected through the nozzle orifice of the chamber by operating the drop forming mechanism.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 30, 2013
    Assignee: Eastman Kodak Company
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 8439477
    Abstract: A method of characterizing an array of resistive heaters, a first resistive heater of the array having a nominal sheet resistance, a first nominal length and a first nominal width, the method includes (a) providing a first configuration test resistor disposed proximate the first resistive heater, the first configuration test resistor including a second nominal length and a second nominal width, wherein the second nominal length is different from the first nominal length; (b) measuring a resistance of the first resistive heater; (c) measuring a resistance of the first configuration test resistor; and (d) determining the actual sheet resistance and the actual length of the first resistive heater based on the measured resistances of the first resistive heater and the first configuration test resistor.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: May 14, 2013
    Assignee: Eastman Kodak Company
    Inventors: Roger G. Markham, David P. Trauernicht, John A. Lebens, Christopher R. Morton
  • Patent number: 8398210
    Abstract: A continuous liquid ejection system includes a substrate defining a liquid chamber. An orifice plate, affixed to the substrate, includes a MEMS transducing member. The MEMS transducing member includes a first portion anchored to the substrate and a second portion extending over and free to move relative to the liquid chamber. A compliant membrane, positioned in contact with the MEMS transducing member, includes an orifice and a first portion covering the MEMS transducing member and a second portion anchored to the substrate. A liquid supply provides a liquid to the liquid chamber under a pressure sufficient to eject a continuous jet of the liquid through the orifice located in the compliant membrane. The MEMS transducing member is selectively actuated to cause a portion of the compliant membrane to be displaced relative to the liquid chamber to cause a drop of liquid to break off from the liquid jet.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: March 19, 2013
    Assignee: Eastman Kodak Company
    Inventors: Michael F. Baumer, James D. Huffman, Hrishikesh V. Panchawagh, Jeremy M. Grace, Yonglin Xie, Qing Yang, David P. Trauernicht, John A. Lebens
  • Publication number: 20130027461
    Abstract: A method of characterizing an array of resistive heaters, a first resistive heater of the array having a nominal sheet resistance, a first nominal length and a first nominal width, the method includes (a) providing a first configuration test resistor disposed proximate the first resistive heater, the first configuration test resistor including a second nominal length and a second nominal width, wherein the second nominal length is different from the first nominal length; (b) measuring a resistance of the first resistive heater; (c) measuring a resistance of the first configuration test resistor; and (d) determining the actual sheet resistance and the actual length of the first resistive heater based on the measured resistances of the first resistive heater and the first configuration test resistor.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Inventors: Roger G. Markham, David P. Trauernicht, John A. Lebens, Christopher R. Morton
  • Publication number: 20130027449
    Abstract: An inkjet printhead includes an array of drop ejectors, a first drop ejector of the array including a first resistive heater having a first nominal length and a first nominal width; and a first configuration test resistor disposed proximate the first resistive heater, the first configuration test resistor including a second nominal length and a second nominal width, wherein the second nominal length is different from the first nominal length.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Inventors: Roger G. Markham, David P. Trauernicht, John A. Lebens, Christopher R. Morton
  • Publication number: 20120268529
    Abstract: A method of continuously ejecting liquid includes providing a liquid ejection system that includes a substrate and an orifice plate affixed to the substrate. Portions of the substrate define a liquid chamber. The orifice plate includes a MEMS transducing member. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the liquid chamber. The second portion of the MEMS transducing member is free to move relative to the liquid chamber. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member and a second portion of the compliant membrane is anchored to the substrate. The compliant membrane includes an orifice. Liquid is provided under a pressure sufficient to eject a continuous jet of the liquid through the orifice located in the compliant membrane of the orifice plate by a liquid supply.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Inventors: Michael F. Baumer, James D. Huffman, Hrishikesh V. Panchawagh, Jeremy M. Grace, Yonglin Xie, Qing Yang, David P. Trauernicht, John A. Lebens
  • Publication number: 20120268525
    Abstract: A continuous liquid ejection system includes a substrate and an orifice plate affixed to the substrate. Portions of the substrate define a liquid chamber. The orifice plate includes a MEMS transducing member. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the liquid chamber and is free to move relative to the liquid chamber. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member and a second portion of the compliant membrane is anchored to the substrate. The compliant membrane includes an orifice. A liquid supply provides a liquid to the liquid chamber under a pressure sufficient to eject a continuous jet of the liquid through the orifice located in the compliant membrane of the orifice plate.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Inventors: Michael F. Baumer, James D. Huffman, Hrishikesh V. Panchawagh, Jeremy M. Grace, Yonglin Xie, Qing Yang, David P. Trauernicht, John A. Lebens
  • Publication number: 20120268513
    Abstract: A method of ejecting a drop of fluid includes providing a fluid ejector. The fluid ejector includes a substrate, a MEMS transducing member, a compliant membrane, walls, and a nozzle. The substrate includes a cavity and a fluidic feed. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member, A second portion of the compliant membrane being anchored to the substrate. Walls define a chamber that is fluidically connected to the fluidic feed. At least the second portion of the MEMS transducing member is enclosed within the chamber. A quantity of fluid is supplied to the chamber through the fluidic feed.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Inventors: James D. Huffman, Christopher N. Delametter, David P. Trauernicht
  • Publication number: 20120062654
    Abstract: A printer includes a printhead die including liquid ejectors separated by walls. Each liquid ejector includes a nozzle orifice and an associated drop forming mechanism. First and second liquid feed channels, extending in opposite directions, are in fluid communication with each liquid ejector. A liquid inlet includes a plurality of first and second segments in fluid communication with the first liquid feed channels and the second liquid feed channels, respectively. The first and second segments are located on opposite sides of the nozzle orifice. For a given liquid ejector, both of the first and second segments are directly in line with the liquid ejector. An electrical lead extends from each drop forming mechanism toward an edge of the printhead die. At least one of the electrical leads is positioned between neighboring segments of at least one of the first and second segments of the liquid inlet.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Publication number: 20110128316
    Abstract: A liquid ejector is provided that includes a structure defining a plurality of chambers with one of the plurality of chambers including a first surface and a second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. A first liquid feed channel and a second liquid feed channel are in fluid communication with the chamber. A first segment of a segmented liquid inlet is in fluid communication with the first liquid feed channel and a second segment of the segmented liquid inlet is in fluid communication with the second liquid feed channel. The first segment of the segmented liquid inlet is also in fluid communication with another one of the plurality of chambers and the second segment of the liquid inlet is also in fluid communication with another one of the plurality of chambers.
    Type: Application
    Filed: November 2, 2010
    Publication date: June 2, 2011
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 7857422
    Abstract: A liquid ejector includes a structure defining a chamber. The chamber includes a first surface and a second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. A first liquid feed channel and a second liquid feed channel are in fluid communication with the chamber. A first segment of a segmented liquid inlet is in fluid communication with the first liquid feed channel and a second segment of the segmented liquid inlet is in fluid communication with the second liquid feed channel.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 28, 2010
    Assignee: Eastman Kodak Company
    Inventors: Christopher N. Delametter, John A. Lebens, David P. Trauernicht, James M. Chwalek, Yonglin Xie, Gary A. Kneezel, Christopher R. Morton, Cathie J. Burke
  • Patent number: 7836600
    Abstract: A method of forming a fluid chamber and a source of fluid impedance includes providing a substrate having a surface; depositing a first material layer on the surface of the substrate, the first material layer being differentially etchable with respect to the substrate; removing a portion of the first material layer thereby forming a patterned first material layer and defining the fluid chamber boundary location; depositing a sacrificial material layer over the patterned first layer; removing a portion of the sacrificial material layer thereby forming a patterned sacrificial material layer and further defining the fluid chamber boundary location; depositing at least one additional material layer over the patterned sacrificial material layer; forming a hole extending from the at least one additional material layer to the sacrificial material layer, the hole being positioned within the fluid chamber boundary location; removing the sacrificial material layer in the fluid chamber boundary location by introducing a
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 23, 2010
    Assignee: Eastman Kodak Company
    Inventors: James M. Chwalek, John A. Lebens, Christopher N. Delametter, David P. Trauernicht, Gary A. Kneezel
  • Patent number: 7824017
    Abstract: An apparatus and method for controlling temperature profiles in ejection mechanisms is provided. A heater includes a first resistor segment having an electrical resistivity, a second resistor segment; and a coupling segment positioned between the first resistor segment and the second resistor segment. The coupling segment has an electrical resistivity, wherein the ratio of the resistivity of the coupling segment to the resistivity of the first resistor segment is substantially zero. Alternatively, the first resistor segment has an electrical conductivity and the coupling segment has an electrical conductivity, wherein the electrical conductivity of the coupling segment is greater than the electrical conductivity of the first resistor segment.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: November 2, 2010
    Assignee: Eastman Kodak Company
    Inventors: Thomas M. Stephany, Christopher N. Delametter, David P. Trauernicht, Ali Lopez
  • Patent number: 7731341
    Abstract: A fluid ejection device, a method of cleaning the device, and a method of operating the device are provided. The device includes a substrate having a first surface and a second surface located opposite the first surface. A nozzle plate is formed over the first surface of the substrate and has a nozzle through which fluid is ejected. A drop forming mechanism is situated at the periphery of the nozzle. A fluid chamber is in fluid communication with the nozzle and has a first wall and a second wall. The first wall and the second wall are positioned at an angle other than 90° relative to each other. A fluid delivery channel is formed in the substrate and extends from the second surface of the substrate to the fluid chamber. The fluid delivery channel is in fluid communication with the fluid chamber.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: June 8, 2010
    Assignee: Eastman Kodak Company
    Inventors: David P. Trauernicht, Christopher N. Delametter, John A. Lebens, James M. Chwalek, Gary A. Kneezel