Patents by Inventor David Peckham

David Peckham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8315493
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: November 20, 2012
    Assignee: OFS Fitel LLC
    Inventors: Lance Gibson, David Peckham, Robert Lingle, Jr.
  • Patent number: 8295668
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: October 23, 2012
    Assignee: OFS Fitel LLC
    Inventors: Lance Gibson, David Peckham, Robert Lingle, Jr.
  • Publication number: 20120093471
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 19, 2012
    Inventors: Lance Gibson, David Peckham, Robert Lingle, JR.
  • Publication number: 20120033924
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Application
    Filed: October 7, 2011
    Publication date: February 9, 2012
    Inventors: Lance Gibson, David Peckham, Robert Lingle, JR.
  • Patent number: 8073301
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: December 6, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Lance Gibson, David Peckham, Robert Lingle, Jr.
  • Publication number: 20090232463
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 17, 2009
    Inventors: Lance Gibson, David Peckham, Robert Lingle, JR.
  • Publication number: 20080260339
    Abstract: Described herein is a method for making a depressed index cladding for the inner cladding of an optical fiber. The method involves making the depressed index cladding in two steps. The innermost portion of the inner cladding is produced using a soot method, thereby deriving the advantages of the soot method for the region of the cladding that carries the most optical power, then forming the remaining portion of the inner cladding layer using a rod-in-tube step. This method effectively marries the advantages and disadvantages of both methods.
    Type: Application
    Filed: April 23, 2008
    Publication date: October 23, 2008
    Inventors: Eric L. Barish, Robert Lingle, David Peckham, Fengqing Wu
  • Patent number: 7313852
    Abstract: A riveting yoke assembly (11) comprises a yoke (30), a force applying mechanism (22) and a rivet forming device (34, 36). The yoke has a first end (38), a second end (40), and a middle section (42) coupled between the first and second ends (38, 40). An opening (44) is formed through the yoke between the first and second ends. The force applying mechanism (22) is coupled to the first end (38) of the yoke (30). The lower rivet forming device (36) is removably coupled to the second end (40) of the yoke. The lower rivet forming device (36) has a base end (46) attached to the second end (40) of the yoke (30) and a forming end (48) with a recess (50) to form rivets (17). The recess (50) has a concave, interior surface (52) having an annular step (54) positioned between a top edge (56) of the interior surface (52) and a bottom-most point (58) of the interior surface (52) in order to properly align the rivet (17).
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: January 1, 2008
    Assignee: Magna Structural Systems, Inc.
    Inventors: David Peckham, Peter Greengrass, Renee Gregory Scheele
  • Publication number: 20070204657
    Abstract: Described herein is a method for making a depressed index cladding for the inner cladding of an optical fiber. The method involves making the depressed index cladding in two steps. The innermost portion of the inner cladding is produced using a soot method, thereby deriving the advantages of the soot method for the region of the cladding that carries the most optical power, then forming the remaining portion of the inner cladding layer using a rod-in-tube step. This method effectively marries the advantages and disadvantages of both methods.
    Type: Application
    Filed: March 2, 2006
    Publication date: September 6, 2007
    Inventors: Eric Barish, Robert Lingle, David Peckham, Fengqing Wu
  • Publication number: 20070101785
    Abstract: A riveting yoke assembly (11) comprises a yoke (30), a force applying mechanism (22) and a rivet forming device (34, 36). The yoke has a first end (38), a second end (40), and a middle section (42) coupled between the first and second ends (38, 40). An opening (44) is formed through the yoke between the first and second ends. The force applying mechanism (22) is coupled to the first end (38) of the yoke (30). The lower rivet forming device (36) is removably coupled to the second end (40) of the yoke. The lower rivet forming device (36) has a base end (46) attached to the second end (40) of the yoke (30) and a forming end (48) with a recess (50) to form rivets (17). The recess (50) has a concave, interior surface (52) having an annular step (54) positioned between a top edge (56) of the interior surface (52) and a bottom-most point (58) of the interior surface (52) in order to properly align the rivet (17).
    Type: Application
    Filed: May 10, 2006
    Publication date: May 10, 2007
    Inventors: David Peckham, Peter Greengrass, Renee Scheele
  • Patent number: 7209720
    Abstract: A multiband and multimode transmitter circuit (200) includes two separate oscillators, such as at least a first oscillator circuit (60), a second oscillator circuit (62), a corresponding first signal processing circuit (64), and second signal processing circuit (66) to produce a first output frequency signal (78) defined within the first or second band of frequencies in response to a transmitter input signal (46). Each oscillator and corresponding signal processing circuit (64, 66) may be optimized for the lowest power consumption while meeting the noise performance criteria in each of the multiple frequency bands. The multiband and multimode transmitter circuit (200) may produce the transmitter output signal (36) with either linear modulation or nonlinear modulation and at a first band or second band frequencies.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: April 24, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Arul Balasubramaniyan, David Peckham
  • Patent number: 7200909
    Abstract: A riveting yoke assembly (11) comprises a yoke (30), a force applying mechanism (22) and a rivet forming device (34,36). The yoke has a first end (38), a second end (40), and a middle section (42) coupled between the first and second ends (38,40). An opening (44) is formed through the yoke between the first and second ends. The force applying mechanism (22) is coupled to the first end (38) of the yoke (30). The lower rivet forming device (36) is removably coupled to the second end (40) of the yoke. The lower rivet forming device (36) has a base end (46) attached to the second end (40) of the yoke (30) and a forming end (48) with a recess (50) to form rivets (17). The recess (50) has a concave, interior surface (52) having an annular step (54) positioned between a top edge (56) of the interior surface (52) and a bottom-most point (58) of the interior surface (52) in order to properly align the rivet (17).
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: April 10, 2007
    Assignee: Magna Structural Systems Inc.
    Inventors: David Peckham, Peter Greengrass, Renee Gregory Scheele
  • Publication number: 20070052481
    Abstract: Method and apparatus are provided for protecting radio frequency (RF) power amplifiers. A circuit (10) is provided for limiting a supply current to a first stage (Q3) of the RF power amplifier having a second stage (Q2) coupled to the first stage. The circuit comprises a comparator (14) having first and second inputs and an output, and a switching circuit (12, 20, 22, 24) having an input coupled to the output of the comparator (14) and having an output configured to couple to the first stage (Q3). The first input of the comparator (14) is configured to receive the supply current, and the second input is configured to receive a current supplied to the second stage (Q2). The comparator (14) is configured to compare a ratio of the supply current to the first stage to the current supplied to the second stage (Q2) with a predetermined value. The switching circuit (12, 20, 22, 24) is configured to limit the supply current to the first stage (Q3) when the ratio exceeds the predetermined value.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 8, 2007
    Inventors: David Newman, Benjamin Gilsdorf, David Peckham
  • Publication number: 20070037530
    Abstract: A multi-mode transmitter architecture is configurable for multiple modulation modes using either polar or polar-lite modulation. Multiplexed signal paths and reconfigurable components are controlled for performance in GMSK and EDGE burst modes. Polar-lite EDGE modulation is programmed by setting a multiplexer coupling a first amplitude modulated signal path with a frequency modulated signal path input to a dual-mode power amplifier for amplification of the combined EDGE transmission signal. In full-polar EDGE modulation, amplitude modulated signal is multiplexed into a second amplitude modulated signal path for A/D conversion and comparison with a polar feedback signal coupled from the power amplifier output. The resulting comparison is applied to a power control port of the power amplifier to amplitude modulate the EDGE transmission output. Multiplexers are configured to disconnect the amplitude modulated paths when operating in GMSK signaling for both full-polar and polar-lite modulation.
    Type: Application
    Filed: August 9, 2005
    Publication date: February 15, 2007
    Inventors: David Peckham, Richard Meador, Kevin Traylor
  • Publication number: 20070003198
    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventors: Lance Gibson, David Peckham, Robert Lingle
  • Publication number: 20060167940
    Abstract: A system and method for sharing content among a plurality of users, enables the transfer of electronic content items captured by any of a variety of electronic content devices. The content item can include multiple levels of encoding to facilitate efficient transfer across a communication medium. The content item can be decoded at a recipient device to allow playback, display or other utilization of the content item. Content-specific encoding can be applied to enhance the transportability of the content. A content sharing application can be provided to facilitate content transfer in a computing environment, and can be implemented so as to provide an e-mail like user interface.
    Type: Application
    Filed: January 24, 2005
    Publication date: July 27, 2006
    Inventors: Paul Colton, Nicolas Nierenberg, David Peckham
  • Publication number: 20050261166
    Abstract: Compositions and methods for the therapy and diagnosis of cancer, particularly lung cancer, are disclosed. Illustrative compositions comprise one or more lung tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly lung cancer.
    Type: Application
    Filed: July 17, 2003
    Publication date: November 24, 2005
    Applicant: Corixa Corporation
    Inventors: Tongtong Wang, David Peckham, Marc Retter, Gary Fanger
  • Publication number: 20050048932
    Abstract: A multiband and multimode transmitter circuit (200) includes two separate oscillators, such as at least a first oscillator circuit (60), a second oscillator circuit (62), a corresponding first signal processing circuit (64), and second signal processing circuit (66) to produce a first output frequency signal (78) defined within the first or second band of frequencies in response to a transmitter input signal (46). Each oscillator and corresponding signal processing circuit (64, 66) may be optimized for the lowest power consumption while meeting the noise performance criteria in each of the multiple frequency bands. The multiband and multimode transmitter circuit (200) may produce the transmitter output signal (36) with either linear modulation or nonlinear modulation and at a first band or second band frequencies.
    Type: Application
    Filed: August 26, 2003
    Publication date: March 3, 2005
    Applicant: Motorola, Inc.
    Inventors: Arul Balasubramaniyan, David Peckham
  • Publication number: 20040154372
    Abstract: A riveting yoke assembly (11) comprises a yoke (30), a force applying mechanism (22) and a rivet forming device (34,36). The yoke has a first end (38), a second end (40), and a middle section (42) coupled between the first and second ends (38,40). An opening (44) is formed through the yoke between the first and second ends. The force applying mechanism (22) is coupled to the first end (38) of the yoke (30). The lower rivet forming device (36) is removably coupled to the second end (40) of the yoke. The lower rivet forming device (36) has a base end (46) attached to the second end (40) of the yoke (30) and a forming end (48) with a recess (50) to form rivets (17). The recess (50) has a concave, interior surface (52) having an annular step (54) positioned between a top edge (56) of the interior surface (52) and a bottom-most point (58) of the interior surface (52) in order to properly align the rivet (17).
    Type: Application
    Filed: December 23, 2003
    Publication date: August 12, 2004
    Inventors: David Peckham, Peter Greengrass, Renee Gregory Scheele