Patents by Inventor David Pellinen

David Pellinen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11324945
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: May 10, 2022
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Publication number: 20190336750
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Patent number: 10357649
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 23, 2019
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Publication number: 20170224981
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 10, 2017
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Patent number: 9604051
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 28, 2017
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Patent number: 9008747
    Abstract: The neural interface system of one embodiment includes a cylindrical shaft, a lateral extension longitudinally coupled to at least a portion of the shaft and having a thickness less than a diameter of the shaft, and an electrode array arranged on the lateral extension and radially offset from the shaft, including electrode sites that electrically interface with their surroundings. The method of one embodiment for making the neural interface system includes forming a planar polymer substrate with at least one metallization layer, patterning on at least one metallization layer an electrode array on a first end of the substrate, patterning conductive traces on at least one metallization layer, rolling a portion of the substrate toward the first end of the substrate, and securing the rolled substrate into a shaft having the first end of the substrate laterally extending from the shaft and the electrode array radially offset from the shaft.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 14, 2015
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: John Seymour, Jamille Hetke, Rio Vetter, Daryl Kipke, David Pellinen, Kc Kong
  • Publication number: 20140296951
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 2, 2014
    Applicant: SAPIENS STEERING BRAIN STIMULATION B.V.
    Inventors: Rio J. Vetter, Daryl R. Kipke, David Pellinen, David J. Anderson, Jamille Farraye Hetke
  • Patent number: 8731673
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 20, 2014
    Assignee: Sapiens Steering Brain Stimulation B.V.
    Inventors: Rio Vetter, Daryl Kipke, David Pellinen, David Anderson, Jamille Hetke
  • Publication number: 20130090525
    Abstract: The neural interface system of one embodiment includes a cylindrical shaft, a lateral extension longitudinally coupled to at least a portion of the shaft and having a thickness less than a diameter of the shaft, and an electrode array arranged on the lateral extension and radially offset from the shaft, including electrode sites that electrically interface with their surroundings. The method of one embodiment for making the neural interface system includes forming a planar polymer substrate with at least one metallization layer, patterning on at least one metallization layer an electrode array on a first end of the substrate, patterning conductive traces on at least one metallization layer, rolling a portion of the substrate toward the first end of the substrate, and securing the rolled substrate into a shaft having the first end of the substrate laterally extending from the shaft and the electrode array radially offset from the shaft.
    Type: Application
    Filed: March 9, 2012
    Publication date: April 11, 2013
    Inventors: John Seymour, Jamille Hetke, Rio Vetter, Daryl Kipke, David Pellinen, Kc Kong
  • Publication number: 20080208283
    Abstract: The neural interface system of the preferred embodiments includes an electrode array having a plurality of electrode sites and a carrier that supports the electrode array. The electrode array is coupled to the carrier such that the electrode sites are arranged both circumferentially around the carrier and axially along the carrier. A group of the electrode sites may be simultaneously activated to create an activation pattern. The system of the preferred embodiment is preferably designed for deep brain stimulation, and, more specifically, for deep brain stimulation with fine electrode site positioning, selectivity, tunability, and precise activation patterning. The system of the preferred embodiments, however, may be alternatively used in any suitable environment (such as the spinal cord, peripheral nerve, muscle, or any other suitable anatomical location) and for any suitable reason.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 28, 2008
    Inventors: Rio Vetter, Daryl Kipke, David Pellinen, David Anderson, Jamille Hetke
  • Publication number: 20070123765
    Abstract: Some embodiments of the invention comprise a customizable multichannel microelectrode array with a modular planar microfabricated electrode array attached to a carrier and a high density of recording and/or stimulation electrode sites disposed thereon. Novel methods of making and using same are also disclosed.
    Type: Application
    Filed: October 10, 2006
    Publication date: May 31, 2007
    Inventors: Jamille Hetke, Daryl Kipke, David Pellinen, David Anderson
  • Publication number: 20060282014
    Abstract: A flexible multi-modal microelectrode is provided that combines multi-channel fluidic and electrical interfaces for biological and other systems. Methods of making and using same are also disclosed.
    Type: Application
    Filed: June 14, 2006
    Publication date: December 14, 2006
    Inventors: Daryl Kipke, David Pellinen