Patents by Inventor David Perkins

David Perkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10082600
    Abstract: A method of calibration transfer for a testing instrument includes: collecting a first sample; generating a standard response of a first instrument based, at least in part, on the first sample; and performing instrument standardization of a second instrument based, at least in part, on the standard response of the first instrument. Data corresponding to a second sample is then obtained using the second instrument and a component of the second sample is identified based, at least in part, on a calibration model.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 25, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jing Shen, Christopher Jones, Dingding Chen, Michael T. Pelletier, Robert Atkinson, David Perkins
  • Patent number: 10037404
    Abstract: A method of cloning models of a physical fastener may include a computer-aided design (CAD) system receiving one or more instructions that identify a base model of a physical fastener. For each of one or more socket models having at least one characteristic corresponding to the base model, the method may further include generating a clone fastener model based on the base model of a physical fastener and at least one physical property of the one or more socket models.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: July 31, 2018
    Assignee: DASSAULT SYSTEMES SIMULIA CORP.
    Inventors: Jonathan Wiening, David Perkins, Li-Ling Huang, Peter Liberman
  • Patent number: 9726012
    Abstract: Systems and methods for optical fluid identification approximation and calibration are described herein. One example method includes populating a database with a calculated pseudo optical sensor (CPOS) response of a first optical tool to a first sample fluid. The CPOS response of the first optical tool may be based on a transmittance spectrum of a sample fluid and may comprise a complex calculation using selected components of the first optical tool. A first model may be generated based, at least in part, on the database. The first model may receive as an input an optical sensor response and output a predicted fluid property. A second model may also be generated based, at least in part, on the database. The second model may receive as an input at least one known/measured fluid/environmental property value and may output a predicted pseudo optical sensor response of the first optical tool.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 8, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David Perkins, Jing Cynthia Shen, Christopher Michael Jones
  • Patent number: 9702811
    Abstract: Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 11, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9658149
    Abstract: Optical computing devices containing one or more integrated computational elements may be used to produce two or more detector output signals that are computationally combinable to determine a characteristic of a sample. The devices may comprise a first integrated computational element and a second integrated computational element, each integrated computational element having an optical function associated therewith, and the optical function of the second integrated computational element being at least partially offset in wavelength space relative to that of the first integrated computational element; an optional electromagnetic radiation source; at least one detector configured to receive electromagnetic radiation that has optically interacted with each integrated computational element and produce a first signal and a second signal associated therewith; and a signal processing unit operable for computationally combining the first signal and the second signal to determine a characteristic of a sample.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: May 23, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9600454
    Abstract: A method to generate an effective schema of an electronic document for optimizing the processing thereof may include performing a programmatic analysis to determine all required portions of the electronic document. The method may also include generating a parser or deserializer to build an optimized document model; and specializing a document processing program against the optimized document model.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Abraham Heifets, Joseph J. Kesselman, Eric David Perkins
  • Patent number: 9575209
    Abstract: A system includes a light source and a nonlinear converter optically coupled to and remote from the light source. The nonlinear light converter converts a light pulse received from the light source to a broadened or spectrum-shifted light pulse. The system also includes a sensor in situ with the nonlinear light converter. The sensor performs a sense operation based on the broadened or spectrum-shifted light pulse and generates an electrical signal corresponding to the sense operation. The system also includes an electro-optical interface in situ with the sensor that transforms the electrical signal to an optical signal for conveyance to a signal collection interface.
    Type: Grant
    Filed: December 22, 2012
    Date of Patent: February 21, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Etienne M. Samson, Tasneem A. Mandviwala, Robert P. Freese, David Perkins
  • Patent number: 9528931
    Abstract: One disclosed optical computing device includes a sampling window arranged on a housing, an electromagnetic radiation source configured to emit electromagnetic radiation, the electromagnetic radiation being configured to optically interact with a substance outside of the sampling window, at least one integrated computational element (ICE) core arranged to optically interact with the electromagnetic radiation, and a detector arranged to receive the electromagnetic radiation following its optical interaction with the substance and the at least one ICE core and generate an output signal corresponding to a characteristic of the substance, wherein the electromagnetic radiation impinges upon the surfaces of the sampling window at an angle of incidence from normal to the sampling window, and wherein specular reflected light reflects off the sampling window at an opposing angle of incidence, the specular reflected light emanating away from the sampling window such that it is not detected by the detector.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: December 27, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Paul Freese, David Perkins, William Soltmann
  • Publication number: 20160266036
    Abstract: One disclosed optical computing device includes a sampling window arranged on a housing, an electromagnetic radiation source configured to emit electromagnetic radiation, the electromagnetic radiation being configured to optically interact with a substance outside of the sampling window, at least one integrated computational element (ICE) core arranged to optically interact with the electromagnetic radiation, and a detector arranged to receive the electromagnetic radiation following its optical interaction with the substance and the at least one ICE core and generate an output signal corresponding to a characteristic of the substance, wherein the electromagnetic radiation impinges upon the surfaces of the sampling window at an angle of incidence from normal to the sampling window, and wherein specular reflected light reflects off the sampling window at an opposing angle of incidence, the specular reflected light emanating away from the sampling window such that it is not detected by the detector.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 15, 2016
    Applicant: HALLIBURTON ENERGY SERVICES INC.
    Inventors: Robert Paul Freese, David Perkins, William Soltman
  • Patent number: 9383307
    Abstract: Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 5, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9363867
    Abstract: Methods, apparatuses and systems of an intelligent light controller controlling a light, are disclosed. One method includes interpreting a switch from a normal power supply to an emergency power supply. Upon interpreting the switch from the normal power supply to the emergency power supply, the intelligent light controller controllably powers the light for a predetermined period of time. Further, the intelligent light controller executes an energy-savings behavior control of the light.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 7, 2016
    Assignee: enLighted, Inc.
    Inventors: Tanuj Mohan, David Perkins, Premal Ashar
  • Publication number: 20160078150
    Abstract: A method of cloning models of a physical fastener may include a computer-aided design (CAD) system receiving one or more instructions that identify a base model of a physical fastener. For each of one or more socket models having at least one characteristic corresponding to the base model, the method may further include generating a clone fastener model based on the base model of a physical fastener and at least one physical property of the one or more socket models.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 17, 2016
    Inventors: Jonathan Wiening, David Perkins, Li-Ling Huang, Peter Liberman
  • Publication number: 20160032719
    Abstract: Systems and methods for optical fluid identification approximation and calibration are described herein. One example method includes populating a database with a calculated pseudo optical sensor (CPOS) response of a first optical tool to a first sample fluid. The CPOS response of the first optical tool may be based on a transmittance spectrum of a sample fluid and may comprise a complex calculation using selected components of the first optical tool. A first model may be generated based, at least in part, on the database. The first model may receive as an input an optical sensor response and output a predicted fluid property. A second model may also be generated based, at least in part, on the database. The second model may receive as an input at least one known/measured fluid/environmental property value and may output a predicted pseudo optical sensor response of the first optical tool.
    Type: Application
    Filed: March 8, 2013
    Publication date: February 4, 2016
    Inventors: Dingding Chen, David Perkins, Jing Cynthia Shen, Christopher Michael Jones
  • Publication number: 20150300944
    Abstract: A light source and a method for its use in an optical sensor are provided, the light source including a resistively heated element. The light source includes a power circuit configured to provide a pulse width modulated voltage to the resistively heated element, the pulse width modulated voltage including: a duty cycle with a first voltage; and a pulse period including a period with a second voltage, wherein: the duty cycle, the first voltage, and the pulse period are selected so that the resistively heated element is heated to a first temperature; and the first temperature is selected to emit black body radiation in a continuum spectral range. Also provided is an optical sensor for determining a chemical composition including a light source as above.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 22, 2015
    Inventors: Michael Pelletier, William Soltmann, David Perkins, Christopher M. Jones
  • Patent number: 9103767
    Abstract: Using an optical computing device includes optically interacting electromagnetic radiation with a sample and a first integrated computational element arranged within a primary channel, optically interacting the electromagnetic radiation with the sample and a second integrated computational element arranged within a reference channel, producing first and second modified electromagnetic radiations from the first and second integrated computational elements, respectively, receiving the first modified electromagnetic radiation with a first detector, and receiving the second modified electromagnetic radiation with a second detector, generating a first output signal with the first detector and a second output signal with the second detector, and computationally combining the first and second output signals with a signal processor to determine the characteristic of interest of the sample.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: August 11, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9080943
    Abstract: Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 14, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9074990
    Abstract: An exemplary optical computing device includes an electromagnetic radiation source that optically interacts with a sample having a characteristic of interest, a first integrated computational element arranged within a primary channel to optically interact with the electromagnetic radiation source and produce a first modified electromagnetic radiation, wherein the first integrated computational element is configured to be positively or negatively correlated to the characteristic of interest, a second integrated computational element arranged within a reference channel to optically interact with the electromagnetic radiation source and produce a second modified electromagnetic radiation, wherein the second integrated computational element is configured to correlated to the characteristic of interest with an opposite sign relative to the first integrated computational element, and a first detector arranged to generate a first signal from the first modified electromagnetic radiation and a second signal from the s
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: July 7, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9019501
    Abstract: Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 28, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9013702
    Abstract: Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: D745315
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: December 15, 2015
    Inventors: David Perkins, Virginia B Perkins