Patents by Inventor David Perticone

David Perticone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11640706
    Abstract: A computing-device implemented system and method for identifying an item in an x-ray image is described. The method includes training a machine learning algorithm with at least one training data set of x-ray images to generate at least one machine-learned model. The method further includes receiving at least one rendered x-ray image that includes an item, identifying the item using the at least one model, and generating an automated detection indication associated with the item.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: May 2, 2023
    Assignee: Leidos Security Detection & Automation, Inc.
    Inventors: David Perticone, Andrew D. Foland
  • Publication number: 20210056677
    Abstract: A computing-device implemented system and method for identifying an item in an x-ray image is described. The method includes training a machine learning algorithm with at least one training data set of x-ray images to generate at least one machine-learned model. The method further includes receiving at least one rendered x-ray image that includes an item, identifying the item using the at least one model, and generating an automated detection indication associated with the item.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventors: David Perticone, Andrew D. Foland
  • Patent number: 10832391
    Abstract: A computing-device implemented system and method for identifying an item in an x-ray image is described. The method includes training a machine learning algorithm with at least one training data set of x-ray images to generate at least one machine-learned model. The method further includes receiving at least one rendered x-ray image that includes an item, identifying the item using the at least one model, and generating an automated detection indication associated with the item.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: November 10, 2020
    Assignee: L-3 Security & Detection Systems, Inc.
    Inventors: David Perticone, Andrew D. Foland
  • Publication number: 20180336672
    Abstract: A computing-device implemented system and method for identifying an item in an x-ray image is described. The method includes training a machine learning algorithm with at least one training data set of x-ray images to generate at least one machine-learned model. The method further includes receiving at least one rendered x-ray image that includes an item, identifying the item using the at least one model, and generating an automated detection indication associated with the item.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 22, 2018
    Inventors: David Perticone, Andrew D. Foland
  • Patent number: 9239303
    Abstract: This disclosure relates to systems and methods for material discrimination. The systems and methods include a single source that generates both neutrons and photons, and a single imaging array with a common detector that detects the neutrons and the photons generated from the single source. The systems and methods allow for a determination of the contents, and/or the effective atomic number (ā€œZā€) of the contents, of an object without physical inspection of the interior of the object.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: January 19, 2016
    Assignee: L-3 Communications Security and Detection Systems, Inc.
    Inventors: Vitaliy Ziskin, David Perticone
  • Patent number: 8401270
    Abstract: A first image including a projection of a portion is generated based on data representing attenuation of higher-energy radiation having a peak energy of at least 1 MeV that passes through a portion of an inspection volume. A second image including a projection of the portion is generated based on data representing attenuation of lower-energy radiation passing through the portion of the inspection volume. A dual-pixel image is created from the first image and the second image. A region of interest is selected from the dual-pixel image. A first basis function that is derived from an attenuation characteristic associated with the region of interest is selected. The region of interest is represented in terms of an amplitude associated with the first basis function and an amplitude associated with the second basis function.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: March 19, 2013
    Assignee: L-3 Communications Security and Detection Systems, Inc.
    Inventors: Richard F. Eilbert, David Perticone, Shuanghe Shi, Jeff Stillson
  • Publication number: 20130056643
    Abstract: This disclosure relates to systems and methods for material discrimination. The systems and methods include a single source that generates both neutrons and photons, and a single imaging array with a common detector that detects the neutrons and the photons generated from the single source. The systems and methods allow for a determination of the contents, and/or the effective atomic number (ā€œZā€) of the contents, of an object without physical inspection of the interior of the object.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: L-3 Communications Security and Detection Systems, Inc.
    Inventors: Vitaliy Ziskin, David Perticone
  • Patent number: 8345812
    Abstract: A first pulsed beam of charged particles from a particle accelerator is accelerated toward a first target that is configured to emit a fast neutron beam in response to being struck by an accelerated particle such that the fast neutron beam is directed toward a physical region. The last neutron beam includes a neutron having an energy sufficient to cause fission in a fissionable material. Data from a sensor configured to detect radiation of a fission product is accessed, and before accelerating a second pulsed beam of charged particles, whether the physical region includes a fissionable material based on the data from the sensor is determined.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 1, 2013
    Assignee: L-3 Communications Security and Detection Systems, Inc.
    Inventors: David Perticone, Vitaliy Ziskin
  • Publication number: 20120119103
    Abstract: Fissionable materials are distinguished from other high-effective atomic number materials by producing dual-energy x-ray radiation sufficient to cause fission in fissionable materials and directing the dual-energy x-ray radiation sufficient to cause fission in fissionable materials towards a physical region. X-ray radiation and a product of fission from the physical region are sensed. An absorption of the dual-energy x-ray radiation by the physical region is determined based on the sensed x-ray radiation, and whether the physical region includes fissionable material is determined based on the presence of a product of fission.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 17, 2012
    Applicant: L-3 Communications Security and Detection Systems, Inc.
    Inventors: David Perticone, Vitaliy Ziskin
  • Patent number: 8106365
    Abstract: Fissionable materials are distinguished from other high-effective atomic number materials by producing dual-energy x-ray radiation sufficient to cause fission in fissionable materials and directing the dual-energy x-ray radiation sufficient to cause fission in fissionable materials towards a physical region. X-ray radiation and a product of fission from the physical region are sensed. An absorption of the dual-energy x-ray radiation by the physical region is determined based on the sensed x-ray radiation, and whether the physical region includes fissionable material is determined based on the presence of a product of fission.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 31, 2012
    Assignee: L-3 Communications Security and Detection Systems, Inc.
    Inventors: David Perticone, Vitaliy Ziskin
  • Publication number: 20110186739
    Abstract: Apparatus for scanning large cargo to detect concealed contents include a mobile platform configured to carry and position at least one X-ray or gamma-ray source and at least one detector array at a plurality of positions with respect to a stationary cargo. The detector array may be mounted on a boom moveably affixed to the mobile platform. Multiple measurements of radiation passing through the cargo for various source-detector orientations can be used to compute volumetric images of concealed content within the cargo.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 4, 2011
    Applicant: L-3 Communications Security and Detection Systems Inc.
    Inventors: Andrew D. Foland, Richard Franklin Eilbert, Michael R. Gambini, Nicholas Danvers Penrose Gillett, Ronald S. McNabb, Boris Oreper, David Perticone, Vitaliy Ziskin
  • Publication number: 20100290691
    Abstract: A first image including a projection of a portion is generated based on data representing attenuation of higher-energy radiation having a peak energy of at least 1 MeV that passes through a portion of an inspection volume. A second image including a projection of the portion is generated based on data representing attenuation of lower-energy radiation passing through the portion of the inspection volume. A dual-pixel image is created from the first image and the second image. A region of interest is selected from the dual-pixel image. A first basis function that is derived from an attenuation characteristic associated with the region of interest is selected. The region of interest is represented in terms of an amplitude associated with the first basis function and an amplitude associated with the second basis function.
    Type: Application
    Filed: June 15, 2009
    Publication date: November 18, 2010
    Applicant: L-3 Communications Security and Detection Systems, Inc.
    Inventors: Richard F. Eilbert, David Perticone, Shuanghe Shi, Jeff Stillson
  • Publication number: 20090321653
    Abstract: Fissionable materials are distinguished from other high-effective atomic number materials by producing dual-energy x-ray radiation sufficient to cause fission in fissionable materials and directing the dual-energy x-ray radiation sufficient to cause fission in fissionable materials towards a physical region. X-ray radiation and a product of fission from the physical region are sensed. An absorption of the dual-energy x-ray radiation by the physical region is determined based on the sensed x-ray radiation, and whether the physical region includes fissionable material is determined based on the presence of a product of fission.
    Type: Application
    Filed: April 17, 2009
    Publication date: December 31, 2009
    Applicant: L-3 Communications Security and Detection Systems, Inc.
    Inventors: David Perticone, Vitaliy Ziskin
  • Publication number: 20090262882
    Abstract: A first pulsed beam of charged particles from a particle accelerator is accelerated toward a first target that is configured to emit a fast neutron beam in response to being struck by an accelerated particle such that the fast neutron beam is directed toward a physical region. The last neutron beam includes a neutron having an energy sufficient to cause fission in a fissionable material. Data from a sensor configured to detect radiation of a fission product is accessed, and before accelerating a second pulsed beam of charged particles, whether the physical region includes a fissionable material based on the data from the sensor is determined.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 22, 2009
    Applicant: L-3 Communications Security and Detection Systems, Inc.
    Inventors: David Perticone, Vitaliy Ziskin