Patents by Inventor David Philip Williams

David Philip Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116220
    Abstract: An apparatus for manufacturing a composite article from a composite material. The apparatus comprising: a pulsed broadband radiation source comprising a flashlamp and a light guide adapted to guide light emitted by the pulsed broadband radiation source to a target area. The light guide comprises at least a portion ahead of the pulsed broadband radiation source, relative to the target area, comprising a light transmitting material.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 11, 2024
    Inventors: David Philip WILLIAMS, Jeremy WOFFENDIN, Martin Anthony BROWN
  • Patent number: 11559922
    Abstract: An apparatus for manufacturing a composite article from a composite material. The apparatus comprising: a pulsed broadband radiation source comprising a flashlamp and a light guide adapted to guide light emitted by the pulsed broadband radiation source to a target area. The light guide comprises at least a portion ahead of the pulsed broadband radiation source, relative to the target area, comprising a light transmitting material.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: January 24, 2023
    Assignee: Heraeus Noblelight Ltd
    Inventors: David Philip Williams, Jeremy Woffendin, Martin Anthony Brown
  • Publication number: 20180339434
    Abstract: An apparatus for manufacturing a composite article from a composite material. The apparatus comprising: a pulsed broadband radiation source comprising a flashlamp and a light guide adapted to guide light emitted by the pulsed broadband radiation source to a target area. The light guide comprises at least a portion ahead of the pulsed broadband radiation source, relative to the target area, comprising a light transmitting material.
    Type: Application
    Filed: August 3, 2018
    Publication date: November 29, 2018
    Inventors: David Philip WILLIAMS, Jeremy WOFFENDIN, Martin Anthony BROWN
  • Patent number: 7805038
    Abstract: A birefringent elongate waveguide for guiding light, comprises: a core region (110), comprising an elongate region of relatively low refractive index; and a cladding region (100), comprising elongate regions (105) of relatively low refractive index interspersed with elongate regions (117,120) of relatively high refractive index. In a transverse cross-section of the waveguide, a (5) relatively high refractive index boundary region (115) is provided that surrounds the core region and has either (1) at most two-fold rotational symmetry or (2) a rotational symmetry that reduces the rotational symmetry of the waveguide to at most two-fold rotational symmetry. The symmetry of the boundary region (115) results at least in part from azimuthal variations therein, which are substantially uncharacteristic of the cladding region (100).
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: September 28, 2010
    Assignee: NKT Photonics A/S
    Inventors: David Philip Williams, Timothy Adam Birks, Hendrik Sabert
  • Patent number: 7532798
    Abstract: An elongate waveguide for guiding light including a core having an elongate region of relatively low refractive index; a microstructured region around the core comprising elongate regions of relatively low refractive index interspersed with elongate regions of relatively high refractive index; and a boundary at the interface between the core and the microstructured region, the boundary including, in the transverse cross-section, a region of relatively high refractive index, which is connected to the microstructured region at a plurality of nodes, and at least one relatively enlarged region around the boundary, the enlarged region having a major dimension and a minor dimension, wherein the length of the major dimension divided by the length of the minor dimension is more than 3.0.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: May 12, 2009
    Assignee: Crystal Fibre A/S
    Inventors: David Philip Williams, Timothy Adam Birks, Philip St. John Russell, Peter John Roberts, Hendrik Sabert, Alexander Onischenko
  • Publication number: 20080138023
    Abstract: An elongate waveguide for guiding light including a core having an elongate region of relatively low refractive index; a microstructured region around the core comprising elongate regions of relatively low refractive index interspersed with elongate regions of relatively high refractive index; and a boundary at the interface between the core and the microstructured region, the boundary including, in the transverse cross-section, a region of relatively high refractive index, which is connected to the microstructured region at a plurality of nodes, and at least one relatively enlarged region around the boundary, the enlarged region having a major dimension and a minor dimension, wherein the length of the major dimension divided by the length of the minor dimension is more than 3.0.
    Type: Application
    Filed: November 2, 2007
    Publication date: June 12, 2008
    Applicant: CRYSTAL FIBRE A/S
    Inventors: David Philip Williams, Timothy Adam Birks, Philip St. John Russell, Peter John Roberts, Hendrik Sabert, Alexander Onischenko
  • Patent number: 7346249
    Abstract: Improved photonic band-gap optical fibre The present invention relates in particular to improved photonic band-gap optical fibres that can confine light to a core region of the fibre by the action of both a photonic band-gap cladding and an antiresonant core boundary, at the interface between the core and cladding.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: March 18, 2008
    Assignee: Crystal Fibre A/S
    Inventors: Philip St. John Russell, Peter John Roberts, David Philip Williams
  • Patent number: 7321712
    Abstract: An elongate waveguide for guiding light includes a core having an elongate region of relatively low refractive index; a microstructured region around the core having elongate regions of relatively low refractive index interspersed with elongate regions of relatively high refractive index; and a boundary at the interface between the core and the microstructured region, the boundary including in the transverse cross-section, a region of relatively high refractive index, which is connected to the microstructured region at a plurality of nodes, at least one relatively enlarged region around the boundary (and excluding a boundary having twelve nodes and six enlarged regions substantially at a mid-point between six pairs of relatively more-widely-spaced apart neighboring nodes).
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: January 22, 2008
    Assignee: Crystal Fibre A/S
    Inventors: David Philip Williams, Timothy Adam Birks, Philip St. John Russell, Peter John Roberts, Hendrik Sabert, Alexander Onischenko
  • Patent number: 7305164
    Abstract: Novel preforms and methods of making novel preforms are described. The preforms are suitable for being drawn into photonic bandgap optical fibres. In one form, the preform comprises a stack of elongate members having, in transverse cross section, a triangular close-packed arrangement of circular cross section capillaries, which define interstitial regions containing solid rods. The stack is supported around a relatively large capillary, which defines an inner region of the stack. The stack may be adapted by varying the number of rods in any given interstitial region, in order to generate various different configurations of cladding structure, which can be made into optical fibres having surprising operational characteristics, such as a split gap.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: December 4, 2007
    Assignee: Crystal Fibre A/S
    Inventors: David Philip Williams, Brian Joseph Mangan, Philip St. John Russell