Patents by Inventor David R. Conrad

David R. Conrad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11606574
    Abstract: Techniques are disclosed for coding video data in which frames from a video source are partitioned into a plurality of tiles of common size, and the tiles are coded as a virtual video sequence according to motion-compensated prediction, each tile treated as having respective temporal location of the virtual video sequence. The coding scheme permits relative allocation of coding resources to tiles that are likely to have greater significance in a video coding session, which may lead to certain tiles that have low complexity or low motion content to be skipped during coding of the tiles for select source frames. Moreover, coding of the tiles may be ordered to achieve low coding latencies during a coding session.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: March 14, 2023
    Assignee: APPLE INC.
    Inventors: Dazhong Zhang, Peikang Song, Beibei Wang, Giribalan Gopalan, Albert E. Keinath, Christopher M. Garrido, David R. Conrad, Hsi-Jung Wu, Ming Jin, Hang Yuan, Xiaohua Yang, Xiaosong Zhou, Vikrant Kasarabada, Davide Concion, Eric L. Chien, Bess C. Chan, Karthick Santhanam, Gurtej Singh Chandok
  • Patent number: 11102515
    Abstract: Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: August 24, 2021
    Assignee: Apple Inc.
    Inventors: Jiefu Zhai, Dazhong Zhang, Xiaosong Zhou, Chris Y. Chung, Hsi-Jung Wu, Peikang Song, David R. Conrad, Jae Hoon Kim, Yunfei Zheng
  • Publication number: 20200382806
    Abstract: Techniques are disclosed for coding video data in which frames from a video source are partitioned into a plurality of tiles of common size, and the tiles are coded as a virtual video sequence according to motion-compensated prediction, each tile treated as having respective temporal location of the virtual video sequence. The coding scheme permits relative allocation of coding resources to tiles that are likely to have greater significance in a video coding session, which may lead to certain tiles that have low complexity or low motion content to be skipped during coding of the tiles for select source frames. Moreover, coding of the tiles may be ordered to achieve low coding latencies during a coding session.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 3, 2020
    Inventors: Dazhong ZHANG, Peikang SONG, Beibei WANG, Giribalan GOPALAN, Albert E. KEINATH, Christopher M. GARRIDO, David R. CONRAD, Hsi-Jung WU, Ming JIN, Hang YUAN, Xiaohua YANG, Xiaosong ZHOU, Vikrant KASARABADA, Davide CONCION, Eric L. CHIEN, Bess C. CHAN, Karthick SANTHANAM, Gurtej Singh CHANDOK
  • Publication number: 20200296426
    Abstract: Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Jiefu Zhai, Dazhong Zhang, Xiaosong Zhou, Chris Y. Chung, Hsi-Jung Wu, Peikang Song, David R. Conrad, Jae Hoon Kim, Yunfei Zheng
  • Patent number: 10708623
    Abstract: Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 7, 2020
    Assignee: Apple Inc.
    Inventors: Jiefu Zhai, Dazhong Zhang, Xiaosong Zhou, Chris Y. Chung, Hsi-Jung Wu, Peikang Song, David R. Conrad, Jae Hoon Kim, Yunfei Zheng
  • Publication number: 20180338161
    Abstract: Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
    Type: Application
    Filed: July 31, 2018
    Publication date: November 22, 2018
    Inventors: Jiefu Zhai, Dazhong Zhang, Xiaosong Zhou, Chris Y. Chung, Hsi-Jung Wu, Peikang Song, David R. Conrad, Jae Hoon Kim, Yunfei Zheng
  • Patent number: 10038919
    Abstract: Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: July 31, 2018
    Assignee: Apple Inc.
    Inventors: Jiefu Zhai, Dazhong Zhang, Xiaosong Zhou, Chris Y. Chung, Hsi-Jung Wu, Peikang Song, David R. Conrad, Jae Hoon Kim, Yunfei Zheng
  • Patent number: 9414086
    Abstract: Embodiments of the present invention provide techniques for efficiently coding/decoding video data during circumstances where a decoder only requires or utilizes a portion of coded frames. A coder may exchange signaling with a decoder to identify unused areas of frames and prediction modes for the unused areas. An input frame may be parsed into a used area and an unused area based on the exchanged signaling. If motion vectors of the input frame are not limited to the used areas of the reference frames, the unused area of the input frame may be coded using low complexity. If the motion vectors of the input frame are limited to the used areas of the reference frames, the pixel blocks in the unused area of the input frame may not be coded, or the unused area of the input frame may be filled with gray, white, or black pixel blocks.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 9, 2016
    Assignee: Apple Inc.
    Inventors: Feng Yi, David R. Conrad, Chris Y. Chung
  • Publication number: 20150350687
    Abstract: Chroma deblock filtering of reconstructed video samples may be performed to remove blockiness artifacts and reduce color artifacts without over-smoothing. In a first method, chroma deblocking may be performed for boundary samples of a smallest transform size, regardless of partitions and coding modes. In a second method, chroma deblocking may be performed when a boundary strength is greater than 0. In a third method, chroma deblocking may be performed regardless of boundary strengths. In a fourth method, the type of chroma deblocking to be performed may be signaled in a slice header by a flag. Furthermore, luma deblock filtering techniques may be applied to chroma deblock filtering.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: Apple Inc.
    Inventors: Jiefu Zhai, Dazhong Zhang, Xiaosong Zhou, Chris Y. Chung, Hsi-Jung Wu, Peikang Song, David R. Conrad, Jae Hoon Kim, Yunfei Zheng
  • Publication number: 20150350686
    Abstract: A method and system of using a pre-encoder to improve encoder efficiency. The encoder may conform to ITU-T H.265 and the pre-encoder may conform to ITU-T H. 264. The pre-encoder may receive source video data and provide information regarding various coding modes, candidate modes, and a selected mode for coding the source video data. In an embodiment, the encoder may directly use the mode selected by the pre-encoder. In another embodiment, the encoder may receive both the source video data and information regarding the various coding modes (e.g., motion information, macroblock size, intra prediction direction, rate-distortion cost, and block pixel statistics) to simplify and/or refine its mode decision process. For example, the information provided by the pre-encoder may indicate unlikely modes, which unlikely modes need not be tested by the encoder, thus saving power and time.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: Apple Inc.
    Inventors: Xiaosong Zhou, Chris Y. Chung, David R. Conrad, Dazhong Zhang, Feng Yi, Hsi-Jung Wu, Jae Hoon Kim, Jiefu Zhai, Peikang Song, Yunfei Zheng
  • Patent number: 8923640
    Abstract: The invention is directed to an efficient way for encoding and decoding video. Embodiments include identifying different coding units that share a similar characteristic. The characteristic can be, for example: quantization values, modes, block sizes, color space, motion vectors, depth, facial and non-facial regions, and filter values. An encoder may then group the units together as a coherence group. An encoder may similarly create a table or other data structure of the coding units. An encoder may then extract the commonly repeating characteristic or attribute from the coding units. The encoder may transmit the coherence groups along with the data structure, and other coding units which were not part of a coherence group. The decoder may receive the data, and utilize the shared characteristic by storing locally in cache, for faster repeated decoding, and decode the coherence group together.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: December 30, 2014
    Assignee: Apple Inc.
    Inventors: Xiaosong Zhou, Hsi-Jung Wu, Chris Y. Chung, Albert E. Keinath, David R. Conrad, Yunfei Zheng, Dazhong Zhang, Jae Hoon Kim
  • Publication number: 20140362919
    Abstract: The invention is directed to an efficient way for encoding and decoding video. Embodiments include identifying different coding units that share a similar characteristic. The characteristic can be, for example: quantization values, modes, block sizes, color space, motion vectors, depth, facial and non-facial regions, and filter values. An encoder may then group the units together as a coherence group. An encoder may similarly create a table or other data structure of the coding units. An encoder may then extract the commonly repeating characteristic or attribute from the coding units. The encoder may transmit the coherence groups along with the data structure, and other coding units which were not part of a coherence group. The decoder may receive the data, and utilize the shared characteristic by storing locally in cache, for faster repeated decoding, and decode the coherence group together.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Xiaosong Zhou, Hsi-Jung Wu, Chris Y. Chung, Albert E. Keinath, David R. Conrad, Yunfei Zheng, Dazhong Zhang, Jae Hoon Kim
  • Publication number: 20120307904
    Abstract: Embodiments of the present invention provide techniques for efficiently coding/decoding video data during circumstances where a decoder only requires or utilizes a portion of coded frames. A coder may exchange signaling with a decoder to identify unused areas of frames and prediction modes for the unused areas. An input frame may be parsed into a used area and an unused area based on the exchanged signaling. If motion vectors of the input frame are not limited to the used areas of the reference frames, the unused area of the input frame may be coded using low complexity. If the motion vectors of the input frame are limited to the used areas of the reference frames, the pixel blocks in the unused area of the input frame may not be coded, or the unused area of the input frame may be filled with gray, white, or black pixel blocks.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 6, 2012
    Applicant: APPLE INC.
    Inventors: Feng Yi, David R. Conrad, Chris Y. Chung