Patents by Inventor David R. Filpula

David R. Filpula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741283
    Abstract: What is provided is a method of treating a patient having a tumor comprising administering an effective amount of adenosine deaminase, preferably polyalkylene oxide conjugated, to a patient in need thereof.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: June 3, 2014
    Assignee: Sigma-Tau Rare Diseases, S.A.
    Inventors: David R. Filpula, Puja Sapra
  • Patent number: 8071741
    Abstract: A mutein recombinant adenosine deaminase having any oxidizable cysteine residue replaced by a non-oxidizable amino acid residue is disclosed. Stabilized recombinant adenosine deaminase, polymer conjugates and methods of treatment using the same are also disclosed.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: December 6, 2011
    Assignee: Defiante Farmaceutica, S.A.
    Inventors: David R. Filpula, Stephen K. Youngster
  • Patent number: 7632504
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: December 15, 2009
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Publication number: 20090047270
    Abstract: What is provided is a method of treating a patient having a tumor comprising administering an effective amount of adenosine deaminase, preferably polyalkylene oxide conjugated, to a patient in need thereof.
    Type: Application
    Filed: April 18, 2008
    Publication date: February 19, 2009
    Applicant: ENZON PHARMACEUTICALS, INC.
    Inventors: David R. Filpula, Puja Sapra
  • Publication number: 20090047271
    Abstract: A mutein recombinant adenosine deaminase having any oxidizable cysteine residue replaced by a non-oxidizable amino acid residue is disclosed. Stabilized recombinant adenosine deaminase, polymer conjugates and methods of treatment using the same are also disclosed.
    Type: Application
    Filed: April 18, 2008
    Publication date: February 19, 2009
    Applicant: ENZON PHARMACEUTICALS, INC.
    Inventors: David R. Filpula, Stephen K. Youngster
  • Patent number: 7150872
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: December 19, 2006
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Patent number: 6872393
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 29, 2005
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Patent number: 6824782
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: November 30, 2004
    Assignee: Enzon, Inc.
    Inventors: Marc Whitlow, Robert G. L. Shorr, David R. Filpula, Lihsyng Stanford Lee
  • Patent number: 6764853
    Abstract: The present invention is directed to a method of in vivo and ex vivo gene delivery, for a variety of cells. More specifically, it relates to a novel carrier system and method for targeted delivery of nucleic acids to mammalian cells. More specifically, the present invention relates to carrier system comprising single-chain polypeptide binding molecules having an a region rich in basic amino acid and having the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. The basic amino acid rich region can comprise oligo-lysine, oligo-arginine or combinations thereof. Such preparations of modified single chain polypeptide binding molecules also have ability to bind nucleic acids at the region rich in basic amino acid residues. These properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications including gene therapy.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: July 20, 2004
    Assignee: Enzon Pharmaceuticals, Inc.
    Inventors: David R. Filpula, Maoliang Wang, Marc D. Whitlow
  • Patent number: 6692942
    Abstract: The present invention is directed to a method of in vivo and ex vivo gene delivery, for a variety of cells. More specifically, it relates to a novel carrier system and method for targeted delivery of nucleic acids to mammalian cells. More specifically, the present invention relates to carrier system comprising single-chain polypeptide binding molecules having an a region rich in basic amino acid and having the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. The basic amino acid rich region can comprise oligo-lysine, oligo-arginine or combinations thereof. Such preparations of modified single chain polypeptide binding molecules also have ability to bind nucleic acids at the region rich in basic amino acid residues. These properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications including gene therapy.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: February 17, 2004
    Assignee: Enzon, Inc.
    Inventors: David R. Filpula, Maoliang Wang, Marc D. Whitlow
  • Publication number: 20040009166
    Abstract: The present invention relates to monovalent and multivalent single-chain antigen-binding polypeptides with site-specific modifications. The provided polypeptides are capable of being covalently linked or conjugated to polyalkylene oxides at the modified sites. The resulting conjugates retain antigen binding properties and exhibit prolonged circulating time and reduced antigenicity relative to unconjugated single chain antigen binding polypeptides. Methods and compositions for making and using the single chain antigen-binding polypeptides with site-specific modifications are also provided.
    Type: Application
    Filed: April 25, 2003
    Publication date: January 15, 2004
    Inventors: David R. Filpula, Karen Yang, Amartya Basu, Maoliang Wang
  • Publication number: 20020156248
    Abstract: The present invention is directed to a method of in vivo and ex vivo gene delivery, for a variety of cells. More specifically, it relates to a novel carrier system and method for targeted delivery of nucleic acids to mammalian cells. More specifically, the present invention relates to carrier system comprising single-chain polypeptide binding molecules having an a region rich in basic amino acid and having the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. The basic amino acid rich region can comprise oligo-lysine, oligo-arginine or combinations thereof. Such preparations of modified single chain polypeptide binding molecules also have ability to bind nucleic acids at the region rich in basic amino acid residues. These properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications including gene therapy.
    Type: Application
    Filed: November 2, 2001
    Publication date: October 24, 2002
    Applicant: Enzon, Inc.
    Inventors: David R. Filpula, Maoliang Wang, Marc D. Whitlow
  • Publication number: 20020151061
    Abstract: The present invention is directed to a method of in vivo and ex vivo gene delivery, for a variety of cells. More specifically, it relates to a novel carrier system and method for targeted delivery of nucleic acids to mammalian cells. More specifically, the present invention relates to carrier system comprising single-chain polypeptide binding molecules having an a region rich in basic amino acid and having the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. The basic amino acid rich region can comprise oligo-lysine, oligo-arginine or combinations thereof. Such preparations of modified single chain polypeptide binding molecules also have ability to bind nucleic acids at the region rich in basic amino acid residues. These properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications including gene therapy.
    Type: Application
    Filed: October 25, 2001
    Publication date: October 17, 2002
    Inventors: David R. Filpula, Maoliang Wang, Marc D. Whitlow
  • Publication number: 20020098192
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Application
    Filed: February 26, 2001
    Publication date: July 25, 2002
    Applicant: ENZON, INC.
    Inventors: Marc Whitlow, Robert G.L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Publication number: 20020061307
    Abstract: The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
    Type: Application
    Filed: February 26, 2001
    Publication date: May 23, 2002
    Applicant: ENZON, INC.
    Inventors: Marc Whitlow, Robert G.L. Shorr, David R. Filpula, Lihsyng Standford Lee
  • Patent number: 6333396
    Abstract: The present invention is directed to a method of in vivo and ex vivo gene delivery, for a variety of cells. More specifically, it relates to a novel carrier system and method for targeted delivery of nucleic acids to mammalian cells. More specifically, the present invention relates to carrier system comprising single-chain polypeptide binding molecules having an a region rich in basic amino acid and having the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. The basic amino acid rich region can comprise oligo-lysine, oligo-arginine or combinations thereof. Such preparations of modified single chain polypeptide binding molecules also have ability to bind nucleic acids at the region rich in basic amino acid residues. These properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications including gene therapy.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: December 25, 2001
    Assignee: Enzon, Inc.
    Inventors: David R. Filpula, Maoliang Wang, Marc D. Whitlow
  • Patent number: 5990275
    Abstract: The invention is directed to a novel peptide linker useful for connecting polypeptide constituents into a novel linked fusion polypeptide. The peptide linker of the invention provides greater stability and is less susceptible to aggregation than previously known peptide linkers. The peptide linker of the invention may be up to about 50 amino acids in length and contains at least one occurrence of a charged amino acid followed by a proline. When used for making a single chain Fv (sFv), the peptide linker is preferably from 18 to about 30 amino acids in length. A preferred embodiment of the peptide linker of the invention comprises the sequence:GSTSGSGXPGSGEGSTKG (SEQ. ID NO 1),where X is a charged amino acid, preferably lysine or arginine. Methods of making linked fusion polypeptides using the peptide linker of the invention are claimed.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: November 23, 1999
    Assignee: Enzon, Inc.
    Inventors: Marc D. Whitlow, David R. Filpula
  • Patent number: 5856456
    Abstract: The invention is directed to a novel peptide linker useful for connecting polypeptide constituents into a novel linked fusion polypeptide. The peptide linker of the invention provides greater stability and is less susceptible to aggregation than previously known peptide linkers. The peptide linker of the invention may be up to about 50 amino acids in length and contains at least one occurrence of a charged amino acid followed by a proline. When used for making a single chain Fv (sFv), the peptide linker is preferably from 18 to about 30 amino acids in length. A preferred embodiment of the peptide linker of the invention comprises the sequence:GSTSGSGXPGSGEGSTKG (SEQ. ID NO 1),where X is a charged amino acid, preferably lysine or arginine. Methods of making linked fusion polypeptides using the peptide linker of the invention are claimed. DNA molecules encoding such linked fusion polypeptides, and methods of producing such linked fusion polypeptides from these DNA molecules are also claimed.
    Type: Grant
    Filed: April 7, 1994
    Date of Patent: January 5, 1999
    Assignee: Enzon, Inc.
    Inventors: Marc D. Whitlow, David R. Filpula