Patents by Inventor David R. Perek

David R. Perek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10281982
    Abstract: A haptic feedback glove worn by a user provides an amount of a resistance to a physical movement of a portion of the user's hand. The haptic feedback glove includes a glove body, an expandable bladder and a pressure source. The glove body includes a first portion corresponding to a first phalange of a user hand, a second portion corresponding to a second phalange of the user hand, and a third portion corresponding to a joint between the first phalange and the second phalange of the user hand. The expandable bladder is coupled to the third portion of the glove body. The expandable bladder has an adjustable size that controls an amount of relative movement between the first portion and the second portion of the glove body. The pressure source is coupled to the glove body, and is configured to adjust the size of the expandable bladder.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 7, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Publication number: 20190121432
    Abstract: A haptic device provides haptic sensation to a user. The haptic device comprises a haptic plate and a plurality of actuators. The haptic plate includes a center portion and an outer portion that circumscribes the center portion. The plurality of actuators is coupled to the outer portion of the haptic plate. Of the plurality of actuators, one or more actuators are configured to generate, in accordance with haptic instructions, a haptic wave that converges to a specific waveform at a specific region of the center portion of the haptic plate. The shape of the specific waveform and the location of the specific region on the center portion of the haptic plate are based in part on the haptic instructions.
    Type: Application
    Filed: October 19, 2017
    Publication date: April 25, 2019
    Inventors: Dustin Jeffery Gordon Krogstad, Cleveland-Joel Chavez Wilcox, Matthew Robert Schwab, Riccardo DeSalvo, David R. Perek, Ravish Mehra, Sean Jason Keller, Ian Andreas Marquez, Sabrina Monique Sandoval
  • Publication number: 20190113971
    Abstract: A haptic device comprises a wearable material configured to a portion of a user. A vibrotactile actuator is coupled to the wearable material and provides haptic feedback in accordance with a drive signal. A driver circuit is electrically coupled to the vibrotactile actuator and provides the drive signal to the vibrotactile actuator. The driver circuit includes an alternating current (AC) voltage source assembly that has a first AC voltage source and a second AC voltage source, each having a terminal. The terminal of the first AC voltage source is electrically coupled to the vibrotactile actuator. A capacitive element electrically is coupled to the terminal of the negative AC voltage source and a regulating element. The regulating element includes a first coupling point and a second coupling point. The first coupling point is electrically coupled to the capacitive element and the vibrotactile actuator, and the second coupling point is grounded.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 18, 2019
    Inventors: Adam Ahne, David R. Perek
  • Patent number: 10261592
    Abstract: A system tracks movement of the VR input device relative to a portion of a user's skin, track movement of the VR input device relative to a physical surface external to the VR input device, or both. The system includes an illumination source integrated with a tracking glove coupled to a virtual reality console, and the illumination source is configured to illuminate a portion of skin on a finger of a user. The system includes an optical sensor integrated with the glove, and the optical sensor is configured to capture a plurality of images of the illuminated portion of skin. The system includes a controller configured to identify differences between one or more of the plurality of images, and to determine estimated position data based in part on the identified differences.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: April 16, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Patent number: 10240622
    Abstract: A fluidic device controls fluid flow in a channel conduit from a fluid entrance to a fluid exit. In some embodiments, the fluidic device comprises the channel conduit, a flexible element, a cross member, and a gate. The channel conduit is bounded by an inner surface that includes a protrusion. The flexible element is coupled to the inner surface of the channel conduit on a different side of the inner surface as the protrusion. The cross member has a first end that is coupled to a deformable surface that is part of the inner surface of the channel conduit and a second end that is coupled to the flexible element. The gate is configured to deform the deformable surface in accordance with a fluid pressure at the gate. An amount of deformation imparted by the gate controls a position of the flexible element via the cross member.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 26, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Jack Lindsay, Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Nicholas Roy Corson, Raymond King
  • Patent number: 10216272
    Abstract: A strain measurement ring measures strain information describing deformation of a strain-sensitive element included in the strain measurement ring due to movement of a user's finger. The strain measurement ring includes a semi-rigid band coupled to a deformable band, which together encompass a portion of the user's body. The semi-rigid band includes two coupling ends each coupled to a respective coupling end of the deformable band. The deformable band includes the strain-sensitive element. The strain measurement ring may include an emitter to transmit strain information to a virtual reality/augmented reality (VR/AR) console. The strain measurement ring may include an actuator to change the tension of the deformable band in response to haptic command signals from a VR/AR console. As a result, the strain measurement ring may apply pressure to the user's skin to simulate contact with a virtual object.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: February 26, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Patent number: 10197459
    Abstract: A deformation sensing apparatus comprises an elastic substrate, a conductive element, and an additional conductive element. The conductive element includes conductive joints that are separated from each other by resolving elements along a length of the conductive element. Different combinations of conductive joints and resolving elements correspond to different segments of the deformation sensing apparatus. Based on a change in capacitance between a conductive joint and the additional conductive element when a strain is applied to the deformation sensing apparatus, the deformation sensing apparatus generates a signal that allows determination of how the strain deforms the deformation sensing apparatus.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: February 5, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III, Brian Michael Scally
  • Publication number: 20180372562
    Abstract: A deformation sensing apparatus comprises an elastic substrate, a first strain-gauge element formed on a first surface of the elastic substrate, and configured to output a first signal in response to a strain applied in a first direction, and a second strain-gauge element formed on a second surface of the elastic substrate opposite to the first surface, and configured to output a second signal in response to a strain applied in the same first direction.
    Type: Application
    Filed: August 6, 2018
    Publication date: December 27, 2018
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III
  • Publication number: 20180373332
    Abstract: A virtual reality system enables a user to interact with virtual objects. The system includes a fiducial ring, an imaging device and a console. The fiducial ring includes a ring body that includes a plurality of fiducial markers that each correspond to a different location on the ring body. An imaging device is configured to capture one or more images of the fiducial ring. The console receives the images that include an image of one or more fiducial markers. Based on the received images of the fiducial markers, the console determines a location on the fiducial ring that corresponds to the imaged fiducial marker. The console determines a position of the fiducial ring based on the determined location of the fiducial marker on the fiducial ring. The console provides content to a head mounted display (HMD) based on the determined position of the fiducial ring.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 27, 2018
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Patent number: 10088902
    Abstract: A virtual reality system enables a user to interact with virtual objects. The system includes a fiducial ring, an imaging device and a console. The fiducial ring includes a ring body that includes a plurality of fiducial markers that each correspond to a different location on the ring body. An imaging device is configured to capture one or more images of the fiducial ring. The console receives the images that include an image of one or more fiducial markers. Based on the received images of the fiducial markers, the console determines a location on the fiducial ring that corresponds to the imaged fiducial marker. The console determines a position of the fiducial ring based on the determined location of the fiducial marker on the fiducial ring. The console provides content to a head mounted display (HMD) based on the determined position of the fiducial ring.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: October 2, 2018
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Patent number: 10067007
    Abstract: A deformation sensing apparatus comprises an elastic substrate, a first strain-gauge element formed on a first surface of the elastic substrate, and configured to output a first signal in response to a strain applied in a first direction, and a second strain-gauge element formed on a second surface of the elastic substrate opposite to the first surface, and configured to output a second signal in response to a strain applied in the same first direction.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: September 4, 2018
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, David R. Perek, Bruce A. Cleary, III
  • Publication number: 20180209562
    Abstract: A fluidic, device controls fluid flow in channel from a source to a drain. In some embodiments, the fluidic device comprises a channel and a gate. The channel is configured to transport a fluid from the source to the drain. The gate controls a rate of fluid flow in the channel in accordance with the fluid pressure within the gate. Specifically, the gate is configured to induce a first flow rate of the fluid in the channel in accordance with a low pressure state of the gate, and a second flow rate of the fluid in the channel in accordance with a high pressure state of the gate. In certain embodiments, the first flow rate is greater than the second flow rate. In alternative embodiments, the second flow rate is greater than the first flow rate.
    Type: Application
    Filed: November 28, 2017
    Publication date: July 26, 2018
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Nicholas Roy Corson, Raymond King, Jack Lindsay, Riccardo DeSalvo, Joseph Minh Tien
  • Patent number: 10032347
    Abstract: A sensor records information about skin stretch perceived by a user based on an interaction with a real object. The sensor includes a mechanical housing configured to be worn on a finger of a user, and a mechanism coupled to the mechanical housing. The mechanism includes a first bearing that rotates in a first direction in response to an interaction with a surface. The mechanism also includes a second bearing coupled to the first bearing, such that rotation of the first bearing causes the second bearing to rotate in a direction opposite to the first direction. The second bearing is in contact with a portion of the finger, and includes a feedback surface that simulates a force associated with the interaction with the surface. The sensor includes a controller configured to monitor rotation of the second bearing and record skin stretch information responsive to the interaction with the surface.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 24, 2018
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Patent number: 10013064
    Abstract: A haptic device configured to provide haptic feedback to a user. In one aspect, a user or part of a user is located on the haptic device including actuators and damping elements. A haptic feedback wave is generated by an actuator and propagated to the user or part of the user on the haptic device. Damping elements receive the haptic feedback wave and suppress the haptic feedback wave to reduce a reflection thereof.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: July 3, 2018
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Ravish Mehra, Christoph Omid Hohnerlein, Elia Gatti, Riccardo DeSalvo, David R. Perek
  • Patent number: 10013055
    Abstract: An eye tracking system, images the surface (e.g., sclera) of each eye of a user to capture an optical flow field resulting from a texture of the imaged surface. The eye tracking system includes illumination source (e.g., laser) and a detector (e.g., camera). The source illuminates a portion of the eye that is imaged the camera. As the eye moves, different areas of the eye are imaged, allowing generation of a map of a portion of the eye. An image of a portion of the eye is includes a diffraction pattern (i.e., the optical flow) corresponding to the portion of the eye. Through a calibration process, the optical flow is mapped to a location where the eye is looking.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: July 3, 2018
    Assignee: Oculus VR, LLC
    Inventors: David R. Perek, Warren Andrew Hunt, Marshall Thomas DePue, Robert Dale Cavin
  • Patent number: 9971410
    Abstract: An actuator configured to provide haptic feedback to a user. The actuator is located on a plate and is configured to apply various excitations to the plate to generate a mechanical wave propagating in the controlled direction. The excitations can be a translational motion of the actuator (or a portion of the actuator) in two or three perpendicular axes. Alternatively, the excitations can be a non-translational motion (e.g., rotation about an axis) of the actuator (or a portion of the actuator). By generating the mechanical wave traveling in the controlled direction, loss of energy due to scattering of the mechanical wave can be obviated.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 15, 2018
    Assignee: Oculus VR, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Ravish Mehra, Christoph Omid Hohnerlein, Elia Gatti, Riccardo DeSalvo, David R. Perek
  • Publication number: 20180120936
    Abstract: A virtual reality system enables a user to interact with virtual objects. The system includes a fiducial ring, an imaging device and a console. The fiducial ring includes a ring body that includes a plurality of fiducial markers that each correspond to a different location on the ring body. An imaging device is configured to capture one or more images of the fiducial ring. The console receives the images that include an image of one or more fiducial markers. Based on the received images of the fiducial markers, the console determines a location on the fiducial ring that corresponds to the imaged fiducial marker. The console determines a position of the fiducial ring based on the determined location of the fiducial marker on the fiducial ring. The console provides content to a head mounted display (HMD) based on the determined position of the fiducial ring.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 3, 2018
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Publication number: 20180108226
    Abstract: A sensor records information about skin stretch perceived by a user based on an interaction with a real object. The sensor includes a mechanical housing configured to be worn on a finger of a user, and a mechanism coupled to the mechanical housing. The mechanism includes a first bearing that rotates in a first direction in response to an interaction with a surface. The mechanism also includes a second bearing coupled to the first bearing, such that rotation of the first bearing causes the second bearing to rotate in a direction opposite to the first direction. The second bearing is in contact with a portion of the finger, and includes a feedback surface that simulates a force associated with the interaction with the surface. The sensor includes a controller configured to monitor rotation of the second bearing and record skin stretch information responsive to the interaction with the surface.
    Type: Application
    Filed: July 13, 2017
    Publication date: April 19, 2018
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Publication number: 20180107277
    Abstract: A haptic feedback glove worn by a user provides an amount of a resistance to a physical movement of a portion of the user's hand. The haptic feedback glove includes a glove body, an expandable bladder and a pressure source. The glove body includes a first portion corresponding to a first phalange of a user hand, a second portion corresponding to a second phalange of the user hand, and a third portion corresponding to a joint between the first phalange and the second phalange of the user hand. The expandable bladder is coupled to the third portion of the glove body. The expandable bladder has an adjustable size that controls an amount of relative movement between the first portion and the second portion of the glove body. The pressure source is coupled to the glove body, and is configured to adjust the size of the expandable bladder.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 19, 2018
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King
  • Publication number: 20180098583
    Abstract: Disclosed is a force ground device (e.g., a glove) including one or more tendons coupled to actuators for providing haptic feedback when worn by a user. The force ground device includes a wristband that couples to the tendons or to the actuators. The wristband grounds forces from the compressed tendons to the wrist of the user. The wristband may include two force grounding segments adjacent to the ulnar and radial sides of the wrist. The wristband may also include a tension adjustment mechanism (e.g., a ratchet) to adjust the tension of the wristband.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 12, 2018
    Inventors: Sean Jason Keller, David R. Perek, Tristan Thomas Trutna, Garett Andrew Ochs, Nicholas Roy Corson, Raymond King