Patents by Inventor David R Sigler

David R Sigler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170304925
    Abstract: A method of resistance spot welding a workpiece stack-up that includes an aluminum workpiece and an adjacent overlapping steel workpiece is disclosed. The method uses a first welding electrode positioned proximate the aluminum workpiece and a second welding electrode positioned proximate the steel workpiece to effectuate the spot welding process. In an effort to positively affect the strength of the ultimately-formed weld joint, external heat may be supplied to the first welding electrode by an external heating source disposed in heat transfer relation with the first welding electrode either before or after, or both before or after, an electrical current is passed between the first and second welding electrodes to create a molten aluminum weld pool within the aluminum workpiece.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 26, 2017
    Inventors: David R. Sigler, David S. Yang, Anil K. Sachdev
  • Publication number: 20170304928
    Abstract: A method of resistance spot welding workpiece stack-ups of different combinations of metal workpieces with a single weld gun using the same set of welding electrodes is disclosed. In this method, a set of opposed welding electrodes that include an original shape and oxide-disrupting structural features are used to resistance spot weld at least two of the following types of workpiece stack-ups in a particular sequence: (1) a workpiece stack-up of two or more aluminum workpieces; (2) a workpiece stack-up that includes an aluminum workpiece and an adjacent steel workpiece; and (3) a workpiece stack-up of two or more steel workpieces. The spot welding sequence calls for completing all of the aluminum-to-aluminum spot welds and/or all of the steel-to-steel spot welds last.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 26, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170297138
    Abstract: A series of many electrical resistance spot welds is to be formed in members of an assembled, but un-joined, body that presents workpiece stack-ups of various combinations of metal workpieces including all aluminum workpieces, all steel workpieces, and a combination of aluminum and steel workpieces. A pair of spot welding electrodes, each with a specified weld face that includes oxide-disrupting features, is used to form the required numbers of aluminum-to-aluminum spot welds, aluminum-to-steel spot welds, and steel-to-steel spot welds. A predetermined sequence of forming the various spot welds may be specified for extending the number of spot welds that can be made before the weld faces must be restored. And, during at least one of the aluminum-to-steel spot welds, a cover is inserted between the weld face of one of the welding electrodes and a side of a workpiece stack-up that includes the adjacent aluminum and steel workpieces.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 19, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170297137
    Abstract: A method of joining an aluminum workpiece and an adjacent overlapping steel workpiece by reaction metallurgical joining, and the resultant metallurgical joint formed between the two workpieces, are disclosed. The method involves compressing a reaction material located between the aluminum and steel workpieces and heating the reaction material momentarily to form a metallurgical joint that comprises bonding interface between the reaction material and the steel workpiece and a bonding interface between the reaction material and the aluminum workpiece. The reaction material is formulated to be able to interact with both aluminum and steel in order to establish the bonding interfaces of the metallurgical joint. Moreover, the practice of oscillating wire arc welding may be employed to deposit the reaction material in the form of a reaction material deposit onto the steel workpiece prior to assembling the steel and aluminum workpieces in a workpiece stack-up.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 19, 2017
    Inventors: Thomas A. Perry, James G. Schroth, David R. Sigler
  • Publication number: 20170297134
    Abstract: A method of resistance spot welding a workpiece stack-up that that includes an aluminum workpiece and an adjacent overlapping steel workpiece involves assembling the workpiece stack-up so that an intermediate metallurgical additive is positioned between the faying surfaces of the aluminum and steel workpieces. The intermediate metallurgical additive includes at least one of carbon, silicon, nickel, manganese, chromium, cobalt, or copper, and has the capability to counteract the growth and formation of Fe—Al intermetallic compounds within a molten metal weld pool created within the aluminum workpiece during resistance spot welding of the workpiece stack-up. In certain aspects of the disclosed method, the intermediate metallurgical additive may be one or more metallurgical additive deposits that are deposited onto the faying surface of the aluminum workpiece or the faying surface of the steel workpiece by an oscillating wire arc welding process.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 19, 2017
    Inventors: David R. Sigler, Thomas A. Perry, James G. Schroth
  • Publication number: 20170297135
    Abstract: A method of resistance spot welding a steel workpiece and an aluminum or aluminum alloy workpiece, and a welding electrode used therein. In one step of the method a workpiece stack-up is provided. The workpiece stack-up includes a steel workpiece and an aluminum or aluminum alloy workpiece. Another step of the method involves contacting the aluminum or aluminum alloy workpiece with a weld face of the welding electrode. The welding electrode has a body and an insert. The insert is composed of a material having an electrical resistivity that is greater than an electrical resistivity of the material of the body. The weld face has a first section defined by a surface of the insert and has a second section defined by a surface of the body. Both the first and second sections make surface-to-surface contact with the aluminum or aluminum alloy workpiece amid resistance spot welding.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: David R. Sigler, Blair E. Carlson, James G. Schroth, David S. Yang, Anil K. Sachdev
  • Publication number: 20170297136
    Abstract: A method of resistance spot welding a workpiece stack-up that includes an aluminum workpiece and an overlapping adjacent steel workpiece so as to minimize the thickness of an intermetallic layer comprising Fe—Al intermetallic compounds involves providing reaction-slowing elements at the faying interface of the aluminum and steel workpieces. The reaction-slowing elements may include at least one of carbon, copper, silicon, nickel, manganese, cobalt, or chromium. Various ways are available for making the one or more reaction-slowing elements available at the faying interface of the aluminum and steel workpieces including being dissolved in a high strength steel or being present in an interlayer that may take on a variety of forms including a rigid shim, a flexible foil, a deposited layer adhered to and metallurgically bonded with a faying surface of the steel workpiece, or an interadjacent organic material layer that includes particles containing the reaction-slowing elements.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 19, 2017
    Inventors: Tyson W. Brown, David R. Sigler, Blair E. Carlson, Amberlee S. Haselhuhn
  • Publication number: 20170291248
    Abstract: A welding electrode is disclosed that includes an electrode welding shell and a blind adapter that are joined together to cooperatively define an internal cavity. The electrode welding shell and the blind adapter may be integrally formed or they may be distinct components that are attached together. The presence of the internal cavity defined by the electrode welding shell and the blind adapter reduces the thermal mass of the welding electrode and slows the rate of conductive heat transfer from the weld face to a cooling fluid, which allows in the center of the weld face to retain heat for a longer duration once current flow through the welding electrode is terminated, thereby positively affecting the spot welding process for particular types of workpiece stack-ups including those that include an aluminum workpiece and an overlapping adjacent steel workpiece.
    Type: Application
    Filed: April 8, 2017
    Publication date: October 12, 2017
    Inventors: David R. Sigler, David S. Yang
  • Publication number: 20170282303
    Abstract: A radially slotted welding electrode is disclosed that may be used in conjunction with a companion second welding electrode to conduct resistance spot welding on a workpiece stack-up assembly that includes a steel workpiece and an overlapping adjacent aluminum workpiece, especially when an intermediate organic material layer is disposed between the workpiece faying surfaces of the steel and aluminum workpieces. The radially slotted welding electrode includes a weld face that has a central upstanding plateau and a convex dome portion that surrounds the central upstanding plateau and which includes a plurality of circumferentially spaced trapezoidal weld face sections that include transverse upstanding arcuate ridges. Together, the central upstanding plateau and the trapezoidal weld face sections of the convex dome portion define an annular channel that surrounds the central plateau and a plurality of radial slots that communicate with and extend outwards from the central channel.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 5, 2017
    Inventors: Hui-Ping Wang, David R. Sigler, Blair E. Carlson
  • Publication number: 20170252853
    Abstract: A spot weld may be formed between an aluminum workpiece and an adjacent overlapping steel workpiece with the use of opposed spot welding electrodes that have mating weld faces designed for engagement with the outer surfaces of the workpiece stack-up assembly. The electrode that engages the stack-up assembly proximate the aluminum workpiece includes a central ascending convex surface and the electrode that engages the stack-up assembly proximate the steel workpiece has an annular surface. The mating weld faces of the first and second spot welding electrodes distribute the passing electrical current along a radially outwardly expanding flow path to provide a more uniform temperature distribution over the intended spot weld interface and may also produce a deformed bonding interface within the formed weld joint. Each of these events can beneficially affect the strength of the weld joint.
    Type: Application
    Filed: February 24, 2017
    Publication date: September 7, 2017
    Inventors: Hui-Ping Wang, Blair E. Carlson, David R. Sigler, Michael J. Karagoulis
  • Patent number: 9737956
    Abstract: Resistance spot welding of a thin-gauge steel workpiece to another steel workpiece is achieved through the combined use of specific spot welding electrodes and a pulsating welding current. Each of the spot welding electrodes has a weld face that is smaller in diameter than a typical steel spot welding electrode. And the pulsating welding current that is used in conjunction with the smaller-sized spot welding electrodes includes at least two stages of electrical current pulses.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: August 22, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: David Yang, Michael J. Karagoulis, David R. Sigler
  • Publication number: 20170232548
    Abstract: A method of adhesive weld bonding a light metal workpiece and a steel workpiece is disclosed that includes applying a plurality of discrete adhesive ribbons to a faying surface of the light metal workpiece, the faying surface of the steel workpiece, or both faying surfaces, and then assembling the workpieces together to establish one or more adhesive zones between the faying surfaces of the light metal and steel workpieces and a plurality of adhesive free zones amongst the adhesive zone(s). The method further includes forming a resistance spot weld that bonds the the light metal workpiece and the steel workpiece together at a spot weld location within one of the adhesive free zones. The formed spot weld includes a weld joint contained within the light metal workpiece that bonds to the faying interface of the steel workpiece.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 17, 2017
    Inventors: Blair E. Carlson, David R. Sigler
  • Patent number: 9731379
    Abstract: Aluminum alloy workpieces and/or magnesium alloy workpieces are joined in a solid state weld by use of a reactive material placed, in a suitable form, at the joining surfaces. Joining surfaces of the workpieces are pressed against the interposed reactive material and heated. The reactive material alloys or reacts with the workpiece surfaces consuming some of the surface material in forming a reaction product comprising a low melting liquid that removes oxide films and other surface impediments to a welded bond across the interface. Further pressure is applied to expel the reaction product and to join the workpiece surfaces in a solid state weld bond.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: August 15, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, James G. Schroth, Xiaohong Q. Gayden, Yen-Lung Chen
  • Publication number: 20170225262
    Abstract: A cutting tool that can simultaneously cut and restore asymmetric weld face geometries of two welding electrodes that are subject to different degradation mechanisms is disclosed along with a method of using such a cutting tool during resistance spot welding of workpiece stack-ups that include dissimilar metal workpieces. The cutting tool includes a first cutting socket and a second cutting socket. The first cutting socket is defined by one or more first shearing surfaces and the second cutting is defined by one or more second shearing surfaces. The first shearing surface(s) and the second shearing surface(s) are profiled to cut and restore a first weld face geometry and a second weld face geometry, respectively, that are different from each other upon receipt of electrode weld faces within the cutting sockets and rotation of the cutting tool.
    Type: Application
    Filed: January 29, 2017
    Publication date: August 10, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170225263
    Abstract: A cutting tool that can simultaneously cut and restore asymmetric weld face geometries of two welding electrodes that are subject to different degradation mechanisms is disclosed along with a method of using such a cutting tool during resistance spot welding of workpiece stack-ups that include dissimilar metal workpieces. The cutting tool includes a first cutting socket and a second cutting socket. The first cutting socket is defined by one or more first shearing surfaces and the second cutting is defined by one or more second shearing surfaces. The first shearing surface(s) and the second shearing surface(s) are profiled to cut and restore a first weld face geometry and a second weld face geometry, respectively, that are different from each other upon receipt of electrode weld faces within the cutting sockets and rotation of the cutting tool.
    Type: Application
    Filed: January 29, 2017
    Publication date: August 10, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis, James G. Schroth
  • Patent number: 9682439
    Abstract: A welding electrode for resistance spot welding includes a weld face comprising rings of ridges that project outwardly from a base surface of the weld face. The rings of ridges are positioned on the weld face to contact and impress into a sheet metal workpiece surface during resistance spot welding. If the welding electrode is used during resistance spot welding of light metal alloy workpieces, such as those of aluminum alloy or magnesium alloy, the rings of ridges on the weld face can contribute to improved welding performance.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 20, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Michael J. Karagoulis
  • Patent number: 9676065
    Abstract: A method for welding a plurality of aluminum to aluminum welds and a plurality of steel to steel welds using the same welder includes providing a resistance spot welder with a pair of weld electrodes having an electrode face radius of curvature in the range between 20 mm and 40 mm. The series of aluminum to aluminum welds is first made, and then, after completing the aluminum to aluminum welds, the series of steel to steel welds are made. After completing the steel to steel welds the weld electrodes are cleaned by an abrasive to remove any buildup or contamination of aluminum on the electrodes. In the event the electrodes have mushroomed, then dressing of the electrodes is provided and then the abrasive cleaning is performed to restore the surface texture.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: June 13, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Michael J. Karagoulis
  • Publication number: 20170157697
    Abstract: A welding electrode suitable for resistance spot welding applications includes a first portion, a second portion, and a reduced diameter portion that extends between and connects the first and second portions. The first portion includes a weld face and the second portion includes a mounting base that opens to an internal recess having a cooling pocket. The reduced diameter portion extends between a back surface of the first portion and a front surface of the second portion such that a gap separates the back and front surfaces from each other. The gap may be vacant or filled with a low conductivity material. The disclosed welding electrode may be used in conjunction with another welding electrode to resistance spot weld a workpiece stack-up that includes an aluminum workpiece and an adjacent overlapping steel workpiece.
    Type: Application
    Filed: December 8, 2015
    Publication date: June 8, 2017
    Inventors: David S. Yang, David R. Sigler
  • Patent number: 9662738
    Abstract: A welding electrode includes an electrode holder and an electrode cap removably attached to the holder and having a central longitudinal axis. The cap includes a body having an end, and a welding surface that is substantially smooth and free from any grooves defined therein, and has a first diameter of from about 7 to 10 mm, a first radius of curvature, and a second radius of curvature that is different from the first radius. The cap includes a skirt portion extending away from the body and configured to bear against the holder. The skirt portion has a first face that is substantially parallel to the axis and spaced apart from the surface. The body has a second face interconnecting the first face and the surface, and the body tapers from the first face to the surface. A method of forming a resistance spot weld joint is also disclosed.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: May 30, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Sampath K. Vanimisetti, David R. Sigler
  • Publication number: 20170106625
    Abstract: A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
    Type: Application
    Filed: August 31, 2016
    Publication date: April 20, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anil K. Sachdev, Raja K. Mishra, Jon T. Carter, Tyson W. Brown, Blair E. Carlson, David R. Sigler, Robert N. Saje, Matthew P. Simonin