Patents by Inventor David R. Smith
David R. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12265358Abstract: Various examples of out-of-plane multicolor waveguide holography systems, methods of manufacture, and methods of use are described herein. In some examples, a multicolor waveguide holography system includes a planar waveguide to convey optical radiation between a grating coupler and a metasurface hologram. The grating coupler may be configured to couple out-of-plane optical radiation of three different color incident at three different angles into the planar waveguide. The combined multicolor optical radiation may be conveyed by the waveguide to the metasurface hologram. The metasurface hologram may diffractively decouple the three colors of optical radiation for off-plane propagation to form a multicolor holographic image in free space.Type: GrantFiled: January 3, 2023Date of Patent: April 1, 2025Inventors: David R. Smith, Zhiqin Huang, Daniel L. Marks
-
Patent number: 12239030Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.Type: GrantFiled: October 9, 2023Date of Patent: February 25, 2025Assignee: Enterprise Science Fund, LLCInventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Jr., Muriel Y. Ishikawa, Victoria Y. H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
-
Publication number: 20240393995Abstract: A navigation device includes a display, an electromagnetic radiation (EMR) receiver, and one or more processors operatively coupled to the display and the EMR receiver. The one or more processors are configured to cause the display, in a first mode of operation, to graphically render a navigation view. The navigation view includes (i) a first informational element relating to a geographic location of the navigation device and (ii) one or both of a compass rose and a geographic map. The one or more processors are further configured to cause the display, in a second mode of operation and responsive to receiving an EMR signal via the EMR receiver, to render an informational view including a second informational element, where the informational view at least partially obscures the navigation view.Type: ApplicationFiled: May 23, 2023Publication date: November 28, 2024Applicant: BAE Systems Information and Electronic Systems Integration IncInventors: Kenneth P. Cogan, Sean L. Heitz, Kent A. Crockett, Benjamin M. Graubard, James K. Weighton, Jimmey C. Stultz, Wayne D. Tattershall, David R. Smith, Matt McElvogue, Warren D. Schramm
-
Patent number: 11990681Abstract: An apparatus includes a traveling-wave antenna array comprising a plurality of adjacent metamaterial surface antennas comprising a waveguide or a cavity, each adjacent metamaterial surface antenna comprising an array of metamaterial radiators coupled to a surface of the waveguide or the cavity, each metamaterial radiator comprising an individually addressable tunable component that can be tuned over a spectral bandwidth to generate different radiation patterns. The apparatus further includes a phase diversity feed coupled to the traveling-wave antenna array and configured to provide adjustable phase diverse input to two or more of the plurality of adjacent metamaterial surface antennas, the phase diverse input comprising a first phase for a first traveling-wave antenna and a second phase for a second traveling-wave antenna, the first phase being different from the second phase, wherein the phase diverse input is-selected to suppress grating lobes for a directed beam pattern selected for transmission.Type: GrantFiled: May 2, 2023Date of Patent: May 21, 2024Assignee: Duke UniversityInventors: Michael Boyarsky, Seyedmohammadreza Faghih Imani, David R. Smith
-
Publication number: 20240122080Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.Type: ApplicationFiled: October 9, 2023Publication date: April 11, 2024Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, JR., Muriel Y. Ishikawa, Victoria Y.H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
-
Publication number: 20240085623Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.Type: ApplicationFiled: September 20, 2023Publication date: March 14, 2024Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
-
Patent number: 11916291Abstract: According to various embodiments, systems and methods for spatial sampling in proximity to the Nyquist limit in traveling-wave antenna systems are disclosed. An apparatus can include a traveling-wave antenna array comprising a plurality of adjacent traveling-wave antennas that each include a plurality of tunable elements that are spaced at, near, or above a Nyquist limit spacing to form an array of tunable elements. The apparatus also includes a phase diversity feed coupled to the traveling-wave antenna array that is configured to provide input to the traveling-wave antenna array including phase diverse input to two or more of the plurality of adjacent traveling-wave antennas. Further, the apparatus includes a plurality of grayscale tuning elements configured to tune the plurality of tunable elements along one or more ranges of one or more tuning variables to form one or more specific output radiation patterns through the traveling-wave antenna array based on the input.Type: GrantFiled: June 6, 2023Date of Patent: February 27, 2024Assignee: Duke UniversityInventors: Michael Boyarsky, Timothy Sleasman, Jonah Gollub, Seyedmohammadreza Faghih Imani, David R. Smith
-
Patent number: 11855342Abstract: A MIMO communication system is provided. The system may include a first antenna comprising a first cavity, a first plurality of RF ports for generating a feed wave within the first cavity, and a first plurality of sub-wavelength artificially structured material elements as arranged on a surface of the first cavity as RF radiators. The first antenna is configured to generate a plurality of radiation patterns respectively corresponding to the first plurality of ports. The system may also include a second antenna comprising a second cavity and a second plurality of sub-wavelength artificially structured material elements arranged on a surface of the second cavity.Type: GrantFiled: November 14, 2022Date of Patent: December 26, 2023Assignee: Duke UniversityInventors: Insang Yoo, Seyedmohammadreza Faghih Imani, Timothy Sleasman, David R. Smith
-
Publication number: 20230352849Abstract: An apparatus includes a traveling-wave antenna array comprising a plurality of adjacent metamaterial surface antennas comprising a waveguide or a cavity, each adjacent metamaterial surface antenna comprising an array of metamaterial radiators coupled to a surface of the waveguide or the cavity, each metamaterial radiator comprising an individually addressable tunable component that can be tuned over a spectral bandwidth to generate different radiation patterns. The apparatus further includes a phase diversity feed coupled to the traveling-wave antenna array and configured to provide adjustable phase diverse input to two or more of the plurality of adjacent metamaterial surface antennas, the phase diverse input comprising a first phase for a first traveling-wave antenna and a second phase for a second traveling-wave antenna, the first phase being different from the second phase, wherein the phase diverse input is-selected to suppress grating lobes for a directed beam pattern selected for transmission.Type: ApplicationFiled: May 2, 2023Publication date: November 2, 2023Inventors: Michael BOYARSKY, Seyedmohammadreza FAGHIH IMANI, David R. SMITH
-
Publication number: 20230352843Abstract: According to various embodiments, systems and methods for spatial sampling in proximity to the Nyquist limit in traveling-wave antenna systems are disclosed. An apparatus can include a traveling-wave antenna array comprising a plurality of adjacent traveling-wave antennas that each include a plurality of tunable elements that are spaced at, near, or above a Nyquist limit spacing to form an array of tunable elements. The apparatus also includes a phase diversity feed coupled to the traveling-wave antenna array that is configured to provide input to the traveling-wave antenna array including phase diverse input to two or more of the plurality of adjacent traveling-wave antennas. Further, the apparatus includes a plurality of grayscale tuning elements configured to tune the plurality of tunable elements along one or more ranges of one or more tuning variables to form one or more specific output radiation patterns through the traveling-wave antenna array based on the input.Type: ApplicationFiled: June 6, 2023Publication date: November 2, 2023Inventors: Michael Boyarsky, Timothy Sleasman, Jonah Gollub, Seyedmohammadreza Faghih Imani, David R. Smith
-
Patent number: 11789200Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.Type: GrantFiled: September 28, 2020Date of Patent: October 17, 2023Assignee: Elwah LLCInventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K. Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, Jr.
-
Patent number: 11785866Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.Type: GrantFiled: February 5, 2019Date of Patent: October 10, 2023Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Jr., Muriel Y. Ishikawa, Victoria Y. H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
-
Patent number: 11705632Abstract: Systems and methods for designing, optimizing, patterning, forming, and manufacturing symphotic structures are described herein. A symphotic structure may be formed by identifying a continuous refractive index distribution calculated to convert each of a plurality of input reference waves to a corresponding plurality of output object waves. The continuous refractive index distribution can be modeled as a plurality of subwavelength voxels. The system can calculate a symphotic pattern as a three-dimensional array of discrete dipole values to functionally approximate the subwavelength voxels. A symphotic structure may be formed with a volumetric distribution of dipole structures. A dipole value, such as a dipole moment (direction and magnitude) of each dipole is selected for the volumetric distribution to convert a plurality of input reference waves to a target plurality of output object waves.Type: GrantFiled: September 21, 2018Date of Patent: July 18, 2023Inventors: David R. Smith, Guillermo Sapiro, Daniel L. Marks, Patrick Bowen, Roberto Zecca, Okan Yurduseven, Jonah N. Gollub
-
Patent number: 11705713Abstract: A device is presented for use in power distribution networks, for limiting transient overvoltages during backfeed on a network primary feeder whose feeder breaker is open and whose network protector fails to open. The device is self-contained and self-protecting, and limits the transient voltages due to an arcing single line-to-ground fault by inserting a resistance into the zero-sequence network of the primary feeder. Limiting transient overvoltages reduces damage to and prevents failures of various network components, and in particular, prevents multiple insulation failures during backfeed and reduces failures during backfeed in microprocessor network protector relays on the secondary side of network transformers whose protectors are open. In addition, the device reduces transient overvoltages associated with re-energizing a network primary feeder by closing the station breaker when all network protectors on the feeder are open, as occurs when restoring a network primary feeder that has been out of service.Type: GrantFiled: July 29, 2022Date of Patent: July 18, 2023Inventor: David R. Smith
-
Patent number: 11670861Abstract: According to various embodiments, systems and methods for spatial sampling in proximity to the Nyquist limit in traveling-wave antenna systems are disclosed. An apparatus can include a traveling-wave antenna array comprising a plurality of adjacent traveling-wave antennas that each include a plurality of tunable elements that are spaced at, near, or above a Nyquist limit spacing to form an array of tunable elements. The apparatus also includes a phase diversity feed coupled to the traveling-wave antenna array that is configured to provide input to the traveling-wave antenna array including phase diverse input to two or more of the plurality of adjacent traveling-wave antennas. Further, the apparatus includes a plurality of grayscale tuning elements configured to tune the plurality of tunable elements along one or more ranges of one or more tuning variables to form one or more specific output radiation patterns through the traveling-wave antenna array based on the input.Type: GrantFiled: November 25, 2020Date of Patent: June 6, 2023Assignee: Duke UniversityInventors: Michael Boyarsky, Timothy Sleasman, Jonah Gollub, Seyedmohammadreza Faghih Imani, David R. Smith
-
Patent number: 11670867Abstract: According to various embodiments, systems and methods for suppressing grating lobes in a traveling-wave antenna system are disclosed. An apparatus can include a traveling-wave antenna array comprising a plurality of adjacent traveling-wave antennas. The apparatus also can include a phase diversity feed coupled to the traveling-wave antenna array. The phase diversity feed can be configured to provide phase diverse input to two or more of the plurality of adjacent traveling-wave antennas.Type: GrantFiled: November 23, 2020Date of Patent: June 6, 2023Assignee: Duke UniversityInventors: Michael Boyarsky, Seyedmohammadreza Faghih Imani, David R. Smith
-
Publication number: 20230143134Abstract: A MIMO communication system is provided. The system may include a first antenna comprising a first cavity, a first plurality of RF ports for generating a feed wave within the first cavity, and a first plurality of sub-wavelength artificially structured material elements as arranged on a surface of the first cavity as RF radiators. The first antenna is configured to generate a plurality of radiation patterns respectively corresponding to the first plurality of ports. The system may also include a second antenna comprising a second cavity and a second plurality of sub-wavelength artificially structured material elements arranged on a surface of the second cavity.Type: ApplicationFiled: November 14, 2022Publication date: May 11, 2023Inventors: Insang Yoo, Seyedmohammadreza Faghih Imani, Timothy Sleasman, David R. Smith
-
Publication number: 20230141643Abstract: Various examples of out-of-plane multicolor waveguide holography systems, methods of manufacture, and methods of use are described herein. In some examples, a multicolor waveguide holography system includes a planar waveguide to convey optical radiation between a grating coupler and a metasurface hologram. The grating coupler may be configured to couple out-of-plane optical radiation of three different color incident at three different angles into the planar waveguide. The combined multicolor optical radiation may be conveyed by the waveguide to the metasurface hologram. The metasurface hologram may diffractively decouple the three colors of optical radiation for off-plane propagation to form a multicolor holographic image in free space.Type: ApplicationFiled: January 3, 2023Publication date: May 11, 2023Inventors: David R. Smith, Zhiqin Huang, Daniel L. Marks
-
Patent number: 11598866Abstract: A single frequency, or very narrow frequency band, microwave imaging system is described herein. A microwave imaging system can include an array transmitter; an array receiver; and a computing device that receives signals detected from the array receiver, transforms the signals received by the array receiver into independent spatial measurements, constructs an image using the independent spatial measurements, and outputs a reconstructed image. The array transmitter and the array receiver may each have a plurality of independently controllable metasurface resonant elements.Type: GrantFiled: June 10, 2019Date of Patent: March 7, 2023Assignee: Duke UniversityInventors: Timothy Sleasman, Laura Pulido Mancera, Jonah Gollub, Michael Boyarsky, Thomas Fromenteze, Seyedmohammadreza Faghih Imani, David R. Smith
-
Patent number: 11543774Abstract: Various examples of out-of-plane multicolor waveguide holography systems, methods of manufacture, and methods of use are described herein. In some examples, a multicolor waveguide holography system includes a planar waveguide to convey optical radiation between a grating coupler and a metasurface hologram. The grating coupler may be configured to couple out-of-plane optical radiation of three different color incident at three different angles into the planar waveguide. The combined multicolor optical radiation may be conveyed by the waveguide to the metasurface hologram. The metasurface hologram may diffractively decouple the three colors of optical radiation for off-plane propagation to form a multicolor holographic image in free space.Type: GrantFiled: July 1, 2019Date of Patent: January 3, 2023Assignee: Duke UniversityInventors: David R. Smith, Zhiqin Huang, Daniel L. Marks