Patents by Inventor David R. Smith

David R. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9048621
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 2, 2015
    Assignee: ELWHA LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20150131864
    Abstract: Described embodiments include a system and method. A digital imaging device is configured to capture images of a region of a contact between a wheel of a terrestrial vehicle and a surface (“contact region”). A correlator is configured to correlate a first digital image of the contact region captured at a first time with a second digital image of the contact region captured at a second time. A kinematics circuit determines an incremental slide or slip of the wheel relative to the surface. A fraction status circuit combines at least two instances of the incremental slide or slip into data indicative of a slide or slip by the terrestrial vehicle relative to the surface. A communications circuit outputs an electronic signal indicative of the data indicative of a slide or slip by the terrestrial vehicle.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Inventors: Tom Driscoll, Joseph R. Guerci, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, JR., Victoria Y. H. Wood
  • Patent number: 9027309
    Abstract: Hot-rolled high-strength steel elongated structural members and method of making same are disclosed by hot-rolling high-strength steel having a specific chemical composition to provide structural units. The units are then welded together to provide structural members of desired geometrical configuration including a thin web with opposed thicker flanges extending therefrom to increase the load bearing capacity of the members.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: May 12, 2015
    Assignees: Consolidated Metal Products, Inc., Nucor Corporation
    Inventors: Hugh M. Gallagher, Jr., Joseph Bryan Loosle, Jack L. Williams, William W. Wood, Brenda D. Daniels, Cory J. Anthony, David R. Smith
  • Publication number: 20150116187
    Abstract: Complementary metamaterial elements provide an effective permittivity and/or permeability for surface structures and/or waveguide structures. The complementary metamaterial resonant elements may include Babinet complements of “split ring resonator” (SRR) and “electric LC” (ELC) metamaterial elements. In some approaches, the complementary metamaterial elements are embedded in the bounding surfaces of planar waveguides, e.g. to implement waveguide based gradient index lenses for beam steering/focusing devices, antenna array feed structures, etc.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 30, 2015
    Inventors: David R. SMITH, Ruopeng LIU, Tie Jun CUI, Qiang CHENG, Jonah N. GOLLUB
  • Patent number: 9019632
    Abstract: Apparatus, methods, and systems provide negatively-refractive focusing and sensing of electromagnetic energy. In some approaches the negatively-refractive focusing includes providing an interior focusing region with an axial magnification substantially greater than one. In some approaches the negatively-refractive focusing includes negatively-refractive focusing with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 28, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Edward K. Y. Jung, John Brian Pendry, David Schurig, David R. Smith, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9004342
    Abstract: Hot-rolled high-strength steel elongated structural members and method of making same are disclosed by hot-rolling high-strength steel having a specific chemical composition to provide structural units. The units are then welded together to provide structural members of desired geometrical configuration including a thin web with opposed thicker flanges extending therefrom to increase the load bearing capacity of the members.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 14, 2015
    Assignees: Consolidated Metal Products, Inc., Nucor Corporation
    Inventors: Hugh M. Gallagher, Jr., Joseph Bryan Loosle, Jack L. Williams, William W. Wood, Brenda D. Daniels, Cory J. Anthony, David R. Smith
  • Patent number: 9000903
    Abstract: A monitoring service is configured to receive monitoring data from one or more collision detection systems. The monitoring data may comprise collision detection information, such as a collision detection model, sensor data, data pertaining to potential collisions, data pertaining to collisions, vehicle identifier(s), and so on. The monitoring service may extract and/or derive indexing criteria from the monitoring data, and may store and/or index the monitoring data on a persistent storage. An entity may request monitoring data pertaining to a specified time, location, and/or vehicle. The monitoring service may respond to the request by identifying monitoring data that conforms with the request, and providing the identified monitoring data to the requesting entity. The monitoring service may issue collision notifications to emergency service entities and/or may provide collision alerts to vehicles in the vicinity of a collision.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Geoffrey F. Deane, Roderick A. Hyde, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 8988759
    Abstract: An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ?, ?, ?, ?, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: March 24, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Bruce Marshall McWilliams, John Brian Pendry, David Schurig, David R. Smith, Anthony F. Starr, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20150077855
    Abstract: The design method for complex electromagnetic materials is expanded from form-invariant coordinate transformations of Maxwell's equations to finite embedded coordinate transformations. Embedded transformations allow the transfer of electromagnetic field manipulations from the transformation-optical medium to another medium, thereby allowing the design of structures that are not exclusively invisible. A topological criterion for the reflectionless design of complex media is also disclosed and is illustrated in conjunction with the topological criterion to design a parallel beam shifter and a beam splitter with unconventional electromagnetic behavior.
    Type: Application
    Filed: August 19, 2014
    Publication date: March 19, 2015
    Applicant: Duke University
    Inventors: Marco RAHM, David R. Smith, David A. Schurig
  • Publication number: 20150062686
    Abstract: An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 5, 2015
    Applicant: Duke University
    Inventors: David R. Smith, Antoine Moreau, Cristian Ciraci, Jack J. Mock
  • Patent number: 8966900
    Abstract: The present disclosure provides an engine assembly that is installed below the surface of the earth to harvest the thermal energy of the earth, using a working fluid in a closed loop system, and convert it into electricity, which can be commercialized at the surface. The subterranean engine comprises a hot region and a cold region, and a working fluid that moves between the two regions. The movement and efficiency of the working fluid operates the pistons that drive a generator coupled to the pistons, thereby generating electricity. The hot region of the engine is primarily powered by the geothermal energy. The engine can further incorporate renewable energy to improve the movement of the working fluid between the hot and cold regions. The system can further be used to store renewable energy below ground.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 3, 2015
    Inventor: David R. Smith
  • Publication number: 20150057167
    Abstract: An embodiment of a method for resolving features on a probe array is described that, comprises acquiring a plurality of micro-shifted images of a region of a probe array; reconstructing an image of the probe array using the micro-shifted images; and deriving intensity values for one or more probe features disposed on the probe array from the reconstructed image.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: Affymetrix, Inc.
    Inventors: Michael D. Kaiser, David R. Smith
  • Publication number: 20150035662
    Abstract: An adaptive sensing system is configured to acquire sensor data pertaining to objects in the vicinity of a land vehicle. The adaptive sensing system may be configured to identify objects that are at least partially obscured by other objects and, in response, the adaptive sensing system may be configured to modify the configuration of one or more sensors to obtain additional information pertaining to the obscured objects. The adaptive sensing system may comprise and/or be communicatively coupled to a collision detection module, which may use the sensor data acquired by the adaptive sensing system to detect potential collisions.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Inventors: Jeffrey A. Bowers, Geoffrey F. Deane, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Philip A. Sullivan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood, JR.
  • Publication number: 20150039218
    Abstract: An adaptive sensing system is configured to acquire sensor data pertaining to objects in the vicinity of a land vehicle. The adaptive sensing system may be configured to identify objects that are at least partially obscured by other objects and, in response, the adaptive sensing system may be configured to modify the configuration of one or more sensors to obtain additional information pertaining to the obscured objects. The adaptive sensing system may comprise and/or be communicatively coupled to a collision detection module, which may use the sensor data acquired by the adaptive sensing system to detect potential collisions.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Inventors: Jeffrey A. Bowers, Geoffrey F. Deane, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Philip A. Sullivan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood, JR.
  • Publication number: 20150035687
    Abstract: An adaptive sensing system is configured to acquire sensor data pertaining to objects in the vicinity of a land vehicle. The adaptive sensing system may be configured to identify objects that are at least partially obscured by other objects and, in response, the adaptive sensing system may be configured to modify the configuration of one or more sensors to obtain additional information pertaining to the obscured objects. The adaptive sensing system may comprise and/or be communicatively coupled to a collision detection module, which may use the sensor data acquired by the adaptive sensing system to detect potential collisions.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Inventors: Jeffrey A. Bowers, Geoffrey F. Deane, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Philip A. Sullivan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood, JR.
  • Publication number: 20150029050
    Abstract: A wearable radar reflector includes a retroreflector configured to reflect radiation received from a vehicle, and incorporated into a garment worn by a pedestrian.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Applicant: Elwha LLC
    Inventors: Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene
  • Publication number: 20150029051
    Abstract: A wearable radar reflector includes a retroreflector configured to reflect radiation received from a vehicle, and incorporated into a garment worn by a pedestrian.
    Type: Application
    Filed: August 27, 2013
    Publication date: January 29, 2015
    Inventors: Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene
  • Publication number: 20150030256
    Abstract: Multi-sensor compressive imaging systems can include an imaging component (such an an RF, microwave, or mmW metamaterial surface antenna) and an auxialiary sensing component (such as an EO/IR sensor). In some approaches, the auxiliary sensing component includes a structured light sensor configured to identify the location or posture of an imaging target within a field of view of the imaging component. In some approaches, a reconstructed RF, microwave, or mmW image may be combined with a visual image of a region of interest to provide a multi-spectral representation of the region of interest.
    Type: Application
    Filed: October 10, 2014
    Publication date: January 29, 2015
    Inventors: David Brady, Tom Driscoll, John Hunt, Daniel Marks, Alexander Mrozack, Matthew Reynolds, David R. Smith
  • Publication number: 20150016483
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Publication number: 20150013976
    Abstract: An intelligent well system and method has a sand face completion and a monitoring system to monitor application of a well operation. Various equipment and services may be used. In another aspect, the invention provides a monitoring system for determining placement of a well treatment. Yet another aspect of the invention is an instrumented sand screen. Another aspect is a connector for routing control lines. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Rodney J. Wetzel, Peter V. Howard, Craig D. Johnson, Sudhir Pai, David R. Smith, Jake A. Danos, Patrick W. Bixenman