Patents by Inventor David R. Smith

David R. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10109080
    Abstract: Multi-sensor compressive imaging systems can include an imaging component (such an an RF, microwave, or mmW metamaterial surface antenna) and an auxiliary sensing component (such as an EO/IR sensor). In some approaches, the auxiliary sensing component includes a structured light sensor configured to identify the location or posture of an imaging target within a field of view of the imaging component. In some approaches, a reconstructed RF, microwave, or mmW image may be combined with a visual image of a region of interest to provide a multi-spectral representation of the region of interest.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: October 23, 2018
    Assignee: Duke University
    Inventors: David Brady, Tom Driscoll, John Hunt, Daniel Marks, Alexander Mrozack, Matthew Reynolds, David R. Smith
  • Patent number: 10096991
    Abstract: In one embodiment, a network protector for a spot network includes a circuit breaker and a network protector relay coupled to the circuit breaker. The network protector relay is structured and configured to have network protector relay non-sensitive trip settings for controlling operation of the circuit breaker that will cause the network protector to remain closed when: (i) an angular difference (±) between a transformer phase-to-neutral voltage of the first feeder branch and a transformer phase-to-neutral voltage of the second feeder branch is less than or equal to a first threshold value, and (ii) a magnitude difference (±) between the transformer phase-to-neutral voltage of the feeder branch and the transformer phase-to-neutral voltage of the second feeder branch is less than or equal to a second threshold value.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: October 9, 2018
    Assignee: EATON INTELLIGENT POWER LIMITED
    Inventors: David R. Smith, Marc Andre Faulkner
  • Patent number: 10073179
    Abstract: A three-dimensional map of an environment with buildings is used to computationally predict locations and times of global navigation satellite system (GNSS) transmission quality. A global navigation satellite system (GNSS) receiver can reconcile received satellite transmissions with these predicted satellite transmissions. By comparing actual transmission quality with predicted transmission quality, a system can determine unmodeled obstructions, temporary obstructions, jamming, spoofing or other origins of interference with predicted transmission quality of a satellite in a GNSS.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: September 11, 2018
    Assignee: Elwha LLC
    Inventors: Tom Driscoll, Joseph R. Guerci, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10042083
    Abstract: A thermal sensing device can include an electromagnetic radiation source configured to generate electromagnetic radiation, a first antenna configured to direct electromagnetic radiation generated by the radiation source toward a target, and a second antenna configured to receive microwave radiation emitted from an internal portion of the target. The thermal sensing device can also include a microwave sensor coupled to the second antenna and configured to acquire sensor data regarding the microwave radiation emitted from an internal portion of the target. A processing device, included in the thermal sensing device, can be configured to produce thermal data based on the sensor data.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 7, 2018
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20180159242
    Abstract: An apparatus for reducing electromagnetic scattering includes a first component having a plurality of curved segments, each including a first reflective material, and together forming an enclosed cavity; and a second component having a plurality of flat or cylindrically-curved segments, each comprising a second reflective material. The second component is positioned external to the cavity.
    Type: Application
    Filed: November 27, 2017
    Publication date: June 7, 2018
    Applicant: Elwha LLC
    Inventors: Tom Driscoll, David R. Smith, Yaroslav A. Urzhumov
  • Publication number: 20180159245
    Abstract: Surface scattering antennas with lumped elements provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the surface scattering antenna is a multi-layer printed circuit board assembly, and the lumped elements are surface-mount components placed on an upper surface of the printed circuit board assembly. In some approaches, the scattering elements are adjusted by adjusting bias voltages for the lumped elements. In some approaches, the lumped elements include diodes or transistors.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 7, 2018
    Inventors: Pai-Yen CHEN, Tom DRISCOLL, Siamak EBADI, John Desmond HUNT, Nathan Ingle LANDY, Melroy MACHADO, Jay Howard MCCANDLESS, Milton PERQUE, JR., David R. SMITH, Yaroslav A. URZHUMOV
  • Patent number: 9971063
    Abstract: Broadband metamaterial apparatus, methods, systems, and computer readable media are disclosed, as well as exemplary embodiments that provide cloaking, beam steering, and beam focusing. In one exemplary implementation, a broadband interface structure has a front surface region and a back surface region. The broadband interface structure is arranged to provide electromagnetic energy characteristic of an apparent profile of the back surface region substantially different than an actual profile of the back surface region for electromagnetic energy received at the front surface region.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: May 15, 2018
    Assignee: Duke University
    Inventors: David R. Smith, Ruopeng Liu, Qiang Cheng, Yao Qin, Tie Jun Cui
  • Publication number: 20180129116
    Abstract: An embodiment simultaneously receives light waves emanating from an object and having first frequency components f1.1 and f1.2, and pumped monochromatic coherent light waves having a second frequency f2. The method non-linearly combines the light waves having the first frequency component f1.1 and the pumped monochromatic coherent light waves, and generates coherent light waves having a third frequency component f3.1 that is a sum of the first frequency f1.1 and the second frequency f2. The method non-linearly combines the light waves having the first frequency component f1.2 and the pumped monochromatic coherent light waves, and generates coherent light waves having a third frequency component f3.2 that is a sum of the first frequency f1.2 and the second frequency f2. The method digitizes the generated coherent light waves and outputs an image responsive to the light waves emanating from the object.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 10, 2018
    Inventors: GLEB M. AKSELROD, DAVID R. SMITH
  • Publication number: 20180129115
    Abstract: Embodiments include an apparatus and method. An apparatus includes a metasurface that coherently upconverts light waves having a first frequency f1. A substrate forms a first plasmonic surface. A plasmonic nanoparticle forms a second plasmonic surface. A layer of a second-order nonlinear dielectric material is disposed between the first plasmonic surface and the second plasmonic surface. The metasurface has at least three plasmonic resonant modes including a first plasmonic resonant mode having a first frequency f1, a second plasmonic resonant mode having a second frequency f2, and a third plasmonic resonant mode having a third frequency f3 that is a sum of the first frequency f1 and the second frequency f2. The apparatus includes a second light propagation path from a source of pumped monochromatic coherent light waves having the second frequency f2 to the metasurface. A digital image capture device captures the generated light waves having the frequency f3.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 10, 2018
    Inventors: GLEB M. AKSELROD, DAVID R. SMITH
  • Publication number: 20180131060
    Abstract: The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
    Type: Application
    Filed: July 17, 2017
    Publication date: May 10, 2018
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, David R. Smith, Yaroslav A. Urzhumov
  • Publication number: 20180120071
    Abstract: Thermally-sensitive hardware is at least partially enclosed within a container in which reactants for a solid-solid endothermic chemical reaction are disposed, surrounding at least a portion of the thermally-sensitive hardware. The reactants or a structure including the reactants are positioned between the thermally-sensitive hardware and a heat source, such as an external surface of a missile traveling through atmospheric gases at extremely high speed and experiencing extreme frictional heating. The reactants absorb heat during the solid-solid endothermic reaction to thermally protect the thermally-sensitive hardware. The reactants are preferably selected to absorb heat of at least 5 kilo-Joules per gram (kJ/g) during the solid-solid endothermic chemical reaction.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: David R. Smith, Thomas M. Deppert
  • Publication number: 20180108992
    Abstract: Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 19, 2018
    Inventors: PAI-YEN CHEN, TOM DRISCOLL, SIAMAK EBADI, JOHN DESMOND HUNT, NATHAN INGLE LANDY, MELROY MACHADO, MILTON PERQUE, JR., DAVID R. SMITH, YAROSLAV A. URZHUMOV
  • Patent number: 9935375
    Abstract: A surface scattering reflector antenna includes a plurality of adjustable scattering elements and is configured to produce a reflected beam pattern according to the configuration of the adjustable scattering elements.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 3, 2018
    Inventors: Jeffrey A. Bowers, David Jones Brady, Tom Driscoll, John Desmond Hunt, Roderick A. Hyde, Nathan Ingle Landy, Guy Shlomo Lipworth, Alexander Mrozack, David R. Smith, Clarence T. Tegreene
  • Patent number: 9930825
    Abstract: A device for coating items is provided. The device includes a hopper configured to hold particles of coating. The device also includes a spout including a first end and a second end. The spout is coupled to the hopper at the first end and is configured to receive the particles of coating from the hopper. The device also includes a distribution device coupled between the hopper and the spout and configured to distribute the particles of coating from the hopper into the spout at the first end of the spout. The device also includes a size adjuster device coupled to the second end of the spout. The size adjuster device is configured to resize the particles of coating and to discharge the particles of coating.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: April 3, 2018
    Assignee: Unverferth Manufacturing Company, Inc.
    Inventors: Michael J. Hilvers, David R. Smith
  • Patent number: 9927503
    Abstract: Described embodiments include an apparatus, and a method. An apparatus includes an array of at least two artificially structured electromagnetic unit cells. The at least two artificially structured electromagnetic unit cells are configured to generate a pulse of radiofrequency magnetic field B1 orientated transverse to the quasistatic magnetic field B0 parallel to the z-axis of the bore of a MRI or NMR device by transforming an incident pulse of radiofrequency electromagnetic waves. The generated pulse having magnetic field intensity sufficient to excite a detectable magnetic resonance in magnetically active nuclei located within at least a portion of an examination region located within the bore. The apparatus includes a radiofrequency electromagnetic wave conducting structure configured to distribute a received pulse of radiofrequency electromagnetic waves as an incident pulse of radiofrequency electromagnetic waves to the at least two artificially structured electromagnetic unit cells.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: March 27, 2018
    Inventors: Tom Driscoll, David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9927505
    Abstract: Described embodiments include a system, apparatus, and method. An apparatus includes an array of at least two groups of at least two artificially structured electromagnetic unit cells. Each group of the at least two groups configured to be respectively linearly arranged with respect to the z-axis of the bore of MRI or NMR device. Each group of the at least two groups of artificially structured electromagnetic unit cells configured to transform an incident pulse of radiofrequency electromagnetic waves into a pulse of radiofrequency magnetic field B1 orientated transverse to a segment of the z-axis and spatially proximate to the group. The apparatus includes a radiofrequency electromagnetic wave conducting structure configured to selectably distribute a received pulse of radiofrequency electromagnetic waves to a group of the at least two groups.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: March 27, 2018
    Inventors: Tom Driscoll, David R. Smith, Yaroslav A. Urzhumov
  • Patent number: 9919779
    Abstract: A lightweight transport vessel transports compressed natural gas underwater without needing to liquefy the gas for transport.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 20, 2018
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Tom Driscoll, Alexander Galt Hyde, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, David R. Smith, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20180077711
    Abstract: An automatically adjustable radiofrequency link system includes a radiofrequency transmitter configured to transmit a signal at a frequency of transmission within an extremely high frequency (EHF) band. The system further includes a receiving device configured to receive the transmitted signal and provide feedback to a processing circuit communicatively coupled to the transmitter and the receiving device, wherein the feedback is related to the received signal. The processing circuit is configured to determine required signal properties based on the feedback and determine signal loss properties including an effect of atmospheric absorption, as a function of frequency; determine a modification to the transmitted signal using the signal loss properties and the required signal properties; and adjust the frequency of transmission to obtain a desired transmission signal using the modification.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Applicant: Elwha LLC
    Inventors: Jeffrey A. Bowers, Alistair K. Chan, Russell J. Hannigan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Nathan P. Myhrvold, John Brian Pendry, David R. Smith, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood,, JR.
  • Publication number: 20180069318
    Abstract: Complementary metamaterial elements provide an effective permittivity and/or permeability for surface structures and/or waveguide structures. The complementary metamaterial resonant elements may include Babinet complements of “split ring resonator” (SRR) and “electric LC” (ELC) metamaterial elements. In some approaches, the complementary metamaterial elements are embedded in the bounding surfaces of planar waveguides, e.g. to implement waveguide based gradient index lenses for beam steering/focusing devices, antenna array feed structures, etc.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 8, 2018
    Inventors: David R. Smith, Ruopeng Liu, Tie Jun Cui, Qiang Cheng, Jonah N. Gollub
  • Publication number: 20180057631
    Abstract: An article of manufacture includes a zinc sulfide layer and a coupling agent adhered to the zinc sulfide layer by a disulfide bond. The coupling agent comprises a functional group extending from the zinc sulfide layer.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 1, 2018
    Inventors: Thomas M. Deppert, David R. Smith, William C. Mollberg, Brian J. Zelinski