Patents by Inventor David R. Snyder

David R. Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918297
    Abstract: Disclosed is a system for assisting in guiding and performing a procedure on a subject. The subject may be any appropriate subject such as inanimate object and/or an animate object. The guide and system may include various manipulable or movable members, such as robotic systems, and may be registered to selected coordinate systems.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: March 5, 2024
    Assignee: Mazor Robotics Ltd.
    Inventors: Victor D. Snyder, Matthew F. Dicorleto, Joseph Moctezuma, David E. Macht, Jeremiah R. Beers, Katherine M. Puckett, Katharine E. Darling, Leonid Kleyman, Dany Junio, Dana Gazit-Ankori, Eliyahu Zehavi, Elad Ratzabi, Aviv Ellman, Timothy M. Conkin
  • Patent number: 11919338
    Abstract: An air chuck includes a body and a valve core interface. The body includes output, interface, and input ports. The body defines a first passageway that extends between the output and interface ports. The input port defines a second passageway that is in fluid communication with the first passageway. The valve core interface is slidably coupled with the body and is slidable between extended and retracted positions. The valve core interface includes a shaft and a knob. The shaft includes proximal and distal ends. The distal end is at least partially disposed in the first passageway. The knob is coupled with the proximal end of the shaft. The shaft is rotatably coupled with the body and is selectively rotatable in either tightening or loosening directions via the knob. The distal end of the shaft comprises a grasping feature that is configured to grasp a valve core of a valve stem.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 5, 2024
    Assignee: DILL AIR CONTROLS PRODUCTS, LLC
    Inventors: Sven A. Soltmann, Brian P. Rigney, Scott R. Lakin, David Milo Hollinger, Graham Kendall Snyder, Kristopher Jon Soderstrom
  • Patent number: 11773468
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, magnesium, silicon, and, in some instances, iron and/or manganese, and include Mg2Si phase precipitates. Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: October 3, 2023
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder
  • Patent number: 11401585
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to multicomponent aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, nickel, zirconium, and rare earth elements, and include L12 precipitates having an Al3X composition. Rare earth elements used in example multicomponent aluminum alloys disclosed and contemplated herein include erbium (Er), zirconium (Zr), yttrium (Y), and ytterbium (Yb). Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 2, 2022
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder, Thomas S. Kozmel, II
  • Patent number: 11118247
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 4% to about 7% aluminum, 0% to about 0.2% carbon, about 7% to about 11% cobalt, about 5% to about 9% chromium, about 0.01% to about 0.2% hafnium, about 0.5% to about 2% molybdenum, 0% to about 1.5% rhenium, about 8% to about 10.5% tantalum, about 0.01% to about 0.5% titanium, and about 6% to about 10% tungsten, the balance essentially nickel and incidental elements and impurities.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 14, 2021
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian
  • Patent number: 10941473
    Abstract: Aluminum alloys are provided. The alloys can include one or more of zinc, magnesium, copper, zirconium, yttrium, erbium, ytterbium, scandium, silver, and the balance of aluminum and incidental elements and impurities. The alloys can be used for additive manufacturing of various articles, such as aircraft components.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: March 9, 2021
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: David R. Snyder, James Saal, Jason T. Sebastian, Gregory B. Olson, Jiadong Gong
  • Publication number: 20200385845
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, magnesium, silicon, and, in some instances, iron and/or manganese, and include Mg2Si phase precipitates. Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Application
    Filed: November 28, 2018
    Publication date: December 10, 2020
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder
  • Publication number: 20200370149
    Abstract: Materials, methods and techniques disclosed and contemplated herein relate to multicomponent aluminum alloys. Generally, multicomponent aluminum alloys include aluminum, nickel, zirconium, and rare earth elements, and include L12 precipitates having an Al3X composition. Rare earth elements used in example multicomponent aluminum alloys disclosed and contemplated herein include erbium (Er), zirconium (Zr), yttrium (Y), and ytterbium (Yb). Example multicomponent aluminum alloys disclosed and contemplated herein are particularly suited for use in additive manufacturing operations.
    Type: Application
    Filed: November 28, 2018
    Publication date: November 26, 2020
    Inventors: Jiadong Gong, Gregory B. Olson, David R. Snyder, Thomas S. Kozmel, II
  • Patent number: 10844464
    Abstract: In one embodiment of the present disclosure, a niobium metal alloy composition includes: a vanadium content in the range of about 1.5 to about 12 weight percent; a hafnium content in the range of about 5 to about 13 weight percent; a titanium or zirconium content or a mixture of titanium and zirconium content in the range of about 0.25 to about 2.5 weight percent; and a niobium content as a balance of the alloy.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 24, 2020
    Assignee: Space Exploration Technologies Corp.
    Inventors: Gavin J. Garside, Kevin A. Lohner, Meagan R. Slater, Charles Kuehmann, David R. Snyder, Jason T. Sebastian, Gregory B. Olson
  • Patent number: 10597757
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 0.01% to about 1% vanadium, 0% to about 0.04% carbon, 0% to about 8% niobium, 0% to about 1% titanium, 0% to about 0.04% boron, 0% to about 1% tungsten, 0% to about 1% tantalum, 0% to about 1% hafnium, and 0% to about 1% ruthenium, the balance essentially molybdenum and incidental elements and impurities.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 24, 2020
    Assignee: QUESTEK INNOVATIONS LLC
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian, William Arthur Counts, Abhijeet Misra, James A. Wright
  • Publication number: 20200048743
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 4% to about 7% aluminum, 0% to about 0.2% carbon, about 7% to about 11% cobalt, about 5% to about 9% chromium, about 0.01% to about 0.2% hafnium, about 0.5% to about 2% molybdenum, 0% to about 1.5% rhenium, about 8% to about 10.5% tantalum, about 0.01% to about 0.5% titanium, and about 6% to about 10% tungsten, the balance essentially nickel and incidental elements and impurities.
    Type: Application
    Filed: March 13, 2019
    Publication date: February 13, 2020
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian
  • Patent number: 10351921
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 16, 2019
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Patent number: 10351922
    Abstract: Alloys, a process for preparing the alloys, and manufactured articles including the alloys are described herein. The alloys include, by weight, about 11.5% to about 14.5% chromium, about 0.01% to about 3.0% nickel, about 0.1% to about 1.0% copper, about 0.1% to about 0.2% carbon, about 0.01% to about 0.1% niobium, 0% to about 5% cobalt, 0% to about 3.0% molybdenum, and 0% to about 0.5% titanium, the balance essentially iron and incidental elements and impurities.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: July 16, 2019
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Publication number: 20180245190
    Abstract: Aluminum alloys are provided. The alloys can include one or more of zinc, magnesium, copper, zirconium, yttrium, erbium, ytterbium, scandium, silver, and the balance of aluminum and incidental elements and impurities. The alloys can be used for additive manufacturing of various articles, such as aircraft components.
    Type: Application
    Filed: September 2, 2016
    Publication date: August 30, 2018
    Inventors: David R. Snyder, James Saal, Jason T. Sebastian, Gregory B. Olson, Jiadong Gong
  • Publication number: 20180135143
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 17, 2018
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Patent number: 9914987
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 13, 2018
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Publication number: 20170044646
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 0.01% to about 1% vanadium, 0% to about 0.04% carbon, 0% to about 8% niobium, 0% to about 1% titanium, 0% to about 0.04% boron, 0% to about 1% tungsten, 0% to about 1% tantalum, 0% to about 1% hafnium, and 0% to about 1% ruthenium, the balance essentially molybdenum and incidental elements and impurities.
    Type: Application
    Filed: April 14, 2015
    Publication date: February 16, 2017
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian, William Arthur Counts, Abhijeet Misra, James A. Wright
  • Publication number: 20170016091
    Abstract: Alloys, processes for preparing the alloys, and articles including the alloys are provided. The alloys can include, by weight, about 4% to about 7% aluminum, 0% to about 0.2% carbon, about 7% to about 11% cobalt, about 5% to about 9% chromium, about 0.01% to about 0.2% hafnium, about 0.5% to about 2% molybdenum, 0% to about 1.5% rhenium, about 8% to about 10.5% tantalum, about 0.01% to about 0.5% titanium, and about 6% to about 10% tungsten, the balance essentially nickel and incidental elements and impurities.
    Type: Application
    Filed: May 27, 2015
    Publication date: January 19, 2017
    Inventors: Jiadong Gong, David R. Snyder, Jason T. Sebastian
  • Publication number: 20160289800
    Abstract: Alloys, processes for preparing the alloys, and manufactured articles including the alloys are described. The alloys include, by weight, about 10% to about 20% chromium, about 4% to about 7% titanium, about 1% to about 3% vanadium, 0% to about 10% iron, less than about 7% nickel, 0% to about 10% tungsten, less than about 3% molybdenum, and the balance of weight percent including cobalt and incidental elements and impurities.
    Type: Application
    Filed: August 28, 2013
    Publication date: October 6, 2016
    Inventors: James A. Wright, Jason T. Sebastian, David R. Snyder, Jiadong Gong, Jeremy Hoishun Li
  • Publication number: 20160040262
    Abstract: Alloys, a process for preparing the alloys, and manufactured articles including the alloys are described herein. The alloys include, by weight, about 11.5% to about 14.5% chromium, about 0.01% to about 3.0% nickel, about 0.1% to about 1.0% copper, about 0.1% to about 0.2% carbon, about 0.01% to about 0.1% niobium, 0% to about 5% cobalt, 0% to about 3.0% molybdenum, and 0% to about 0.
    Type: Application
    Filed: April 21, 2015
    Publication date: February 11, 2016
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg