Patents by Inventor David R. Wheeler

David R. Wheeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7314505
    Abstract: Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: January 1, 2008
    Assignee: Sandia Corporation
    Inventors: David R. Wheeler, Patrick R. Lewis, Shawn M. Dirk, Daniel E. Trudell
  • Patent number: 7273517
    Abstract: A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: September 25, 2007
    Assignee: Sandia Corporation
    Inventors: Patrick R. Lewis, David R. Wheeler
  • Patent number: 7045170
    Abstract: A method for depositing an anti-stiction coating on a MEMS device comprises reacting the vapor of an amino-functionalized silane precursor with a silicon surface of the MEMS device in a vacuum chamber. The method can further comprise cleaning the silicon surface of the MEMS device to form a clean hydroxylated silicon surface prior to reacting the precursor vapor with the silicon surface. The amino-functionalized silane precursor comprises at least one silicon atom, at least one reactive amino (or imine) pendant, and at least one hydrophobic pendant. The amino-functionalized silane precursor is highly reactive with the silicon surface, thereby eliminating the need for a post-process anneal step and enabling the reaction to occur at low pressure. Such vapor-phase deposition of the amino-functionalized silane coating provides a uniform surface morphology and strong adhesion to the silicon surface.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 16, 2006
    Assignee: Sandia Corporation
    Inventors: Matthew G. Hankins, Thomas M. Mayer, David R. Wheeler
  • Patent number: 7022861
    Abstract: Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60° C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: April 4, 2006
    Assignee: Sandia National Laboratories
    Inventors: James R. McElhanon, Blake A. Simmons, Thomas Zifer, Gregory M. Jamison, Douglas A. Loy, Kamyar Rahimian, Timothy M. Long, David R. Wheeler, Chad L. Staiger
  • Patent number: 6673525
    Abstract: A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si—O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: January 6, 2004
    Assignee: EUV LLC
    Inventor: David R. Wheeler
  • Patent number: 6593062
    Abstract: A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: July 15, 2003
    Assignee: Sandia Corporation
    Inventors: Barrett George Potter, Jr., Kelly Simmons Potter, David R. Wheeler, Gregory M. Jamison
  • Patent number: 6471886
    Abstract: Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA® carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA® carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl2 and SO2. The SO2 is then irreversibly gettered by ASZM-TEDA® carbon.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: October 29, 2002
    Assignee: Sandia National Laboratories
    Inventors: George Buffleben, Steven H. Goods, Timothy Shepodd, David R. Wheeler, LeRoy Whinnery, Jr.
  • Patent number: 6403753
    Abstract: A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90° C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90° C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: June 11, 2002
    Assignee: Sandia Corporation
    Inventors: Douglas A. Loy, David R. Wheeler, James R. McElhanon, Randall S. Saunders
  • Patent number: 6337384
    Abstract: A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90° C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90° C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: January 8, 2002
    Assignee: Sandia Corporation
    Inventors: Douglas A. Loy, David R. Wheeler, Edward M. Russick, James R. McElhanon, Randall S. Saunders
  • Patent number: 6271335
    Abstract: A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90° C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90° C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: August 7, 2001
    Assignee: Sandia Corporation
    Inventors: James H. Small, Douglas A. Loy, David R. Wheeler, James R. McElhanon, Randall S. Saunders
  • Patent number: 6257606
    Abstract: A spring movement limiting device that limits lateral shift of a spring in a vehicle suspension along a vehicle axle direction includes a first element and a second element. The first element is coupled to the axle and to the spring. The second element is separate from and engageable with the first element. The second element is fixed at a predetermined position relative to the vehicle axle. Engagement between the first element and the second element limits the first element and spring from movement in the vehicle axle direction.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: July 10, 2001
    Assignee: Freightliner LLC
    Inventors: Paul R. Hynes, James W. Larson, David R. Wheeler
  • Publication number: 20010004510
    Abstract: Novel silicon-containing polymer compounds, based on cyclic olefins. These polymer compounds can be used as photoresist materials and because they are transparent to radiation in the spectral range from 193 to 13 nm, which is highly energetic and strongly attenuated, are particularly advantageous as refractory bilayer photoresist materials for semiconductor wafer patterning processes that employ deep ultraviolet (DUV) and extreme ultraviolet (EUV) radiation.
    Type: Application
    Filed: December 19, 2000
    Publication date: June 21, 2001
    Inventor: David R. Wheeler
  • Patent number: 5939577
    Abstract: A novel method for the synthesis of chlorinated or partially chlorinated organosilanes and organopolysilanes. The chlorination is effected by contacting an organosilanes or organopolysilanes with anhydrous CuCl.sub.2 in a nonpolar alkane solvent, preferably pentane or hexadecane, without the use of a catalyst. Copper metal, which is easily filtered, is a reaction product. The filtrate containing the chlorinated organosilane or organopolysilane can be used directly as a reactant to produce, for example, aminoorganosilanes.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: August 17, 1999
    Assignee: Sandia Corporation
    Inventors: David R. Wheeler, Timothy P. Pollagi
  • Patent number: 5550007
    Abstract: A surface-imaging technique for lithographic processes is disclosed. The lithographic processes are used to manufacture integrated circuit devices. An image is produced on a resist that is applied onto a substrate. The image is produced by exposing selected regions of the resist material to radiation. The selected exposed regions correspond to the image. The resist is then exposed to a silylating reagent that selectively reacts with either the exposed or the unexposed region of the resist. The silylated resist is then subjected to reactive ion etching, which forms an in situ silicon oxide etch mask over the silylated regions of the resist. The mask so formed provides etching selectivity which provides precise image transfer from the resist into the substrate.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: August 27, 1996
    Assignee: Lucent Technologies Inc.
    Inventors: Gary N. Taylor, David R. Wheeler
  • Patent number: 5487967
    Abstract: A surface-imaging technique for lithographic processes is disclosed. The lithographic processes are used to manufacture integrated circuit devices. An image is produced on a resist that is applied onto a substrate. The image is produced by exposing selected regions of the resist material to radiation. The selected exposed regions correspond to the image. The resist is then exposed to a silylating reagent that selectively reacts with either the exposed or the unexposed region of the resist. The silylating reagent is combined with a cross-linking reagent. The silylated resist is then subjected to reactive ion etching, which forms an in situ silicon oxide etch mask over the silylated regions of the resist. The mask so formed provides etching selectivity which provides precise image transfer from the resist into the substrate.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: January 30, 1996
    Assignee: AT&T Corp.
    Inventors: Richard S. Hutton, Gary N. Taylor, David R. Wheeler
  • Patent number: 5216083
    Abstract: The monomer cis-5,6-bis(trimethylsiloxy)-1,3-cyclohexadiene can be polymerized with certain catalysts, such as bis(allyltrifluoroacetato nickel (II)) and bis(allylpentafluorophenoxy nickel II). The resulting polymer is a precursor to poly(para-phenylene). Other substituted cyclohexadienes may also be polymerized by these catalysts to form useful polymers.
    Type: Grant
    Filed: February 5, 1992
    Date of Patent: June 1, 1993
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Douglas L. Gin, Vincent P. Conticello, Philip D. Hampton, David R. Wheeler
  • Patent number: 5128418
    Abstract: The monomer cis-5,6-bis(trimethylsiloxy)-1,3-cyclohexadiene can be polymerized with certain catalysts, such as bis(allyltrifluoroacetato nickel (II) and bis(allylpentafluorophenoxy nickel II). The resulting polymer is a precursor to poly(para-phenylene). Other substituted cyclohexadienes may also be polymerized by these catalysts to form useful polymers.
    Type: Grant
    Filed: January 29, 1991
    Date of Patent: July 7, 1992
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Douglas L. Gin, Vincent P. Conticello, Philip D. Hampton, David R. Wheeler