Patents by Inventor David R. Winn

David R. Winn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6657385
    Abstract: A diamond transmission dynode and photocathode are described which include a thin layer of a crystalline semiconductive material. The semiconductive material is preferably textured with a (100) orientation. Metallic electrodes are formed on the input and output surfaces of the semiconductive material so that a bias potential can be applied to enhance electron transport through the semiconductive material. An imaging device and a photomultiplier utilizing the aforesaid transmission dynode and/or photocathode are also described.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: December 2, 2003
    Assignee: Burle Technologies, Inc.
    Inventors: Charles M. Tomasetti, Robert Caracciolo, Charles B. Beetz, David R. Winn
  • Patent number: 6384519
    Abstract: A microdynode electron multiplier provides numerous microchannels extending parallel to one another through a layered structure incorporating insulating spacer layers and dynode layers which either incorporate a conductive electrode layer or are contiguous with a conductive electrode layer. The dynode layers include materials with high electron emissivity. The dynode layers can be biased to different electrical potentials to provide a potential gradient along the length of each microchannel. Multi-stage electron multiplication provides high gain. The device desirably is formed as a monolithic, sealed structure with a cathode structure such as a photocathode and an anode structure. The device can provide a multi pixel imaging device of extremely high sensitivity and resolution.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: May 7, 2002
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., John Steinbeck, Robert W. Boertsler, David R. Winn
  • Publication number: 20020041154
    Abstract: A diamond transmission dynode and photocathode are described which include a thin layer of a crystalline semiconductive material. The semiconductive material is preferably textured with a (100) orientation. Metallic electrodes are formed on the input and output surfaces of the semiconductive material so that a bias potential can be applied to enhance electron transport through the semiconductive material. An imaging device and a photomultiplier utilizing the aforesaid transmission dynode and/or photocathode are also described.
    Type: Application
    Filed: June 20, 2001
    Publication date: April 11, 2002
    Inventors: Charles M. Tomasetti, Robert Caracciolo, Charles B. Beetz, David R. Winn
  • Patent number: 6045677
    Abstract: A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: April 4, 2000
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler, John Steinbeck, David R. Winn
  • Patent number: 5997713
    Abstract: An element with elongated, high aspect ratio channels such as microchannel plate is fabricated by electrochemical etching of a p-type silicon element in a electrolyte to form channels extending through the element. The electrolyte may be an aqueous electrolyte. For use as a microchannel plate, the; the silicon surfaces of the channels can be converted to insulating silicon dioxide, and a dynode material with a high electron emissivity can be deposited onto the insulating surfaces of the channels. New dynode materials are also disclosed.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: December 7, 1999
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler, John Steinbeck, David R. Winn
  • Patent number: 5989406
    Abstract: A magnetically shape-anisotropic material is made by providing a matrix with a plurality of elongated holes, and depositing first and second magnetic materials in each hole so as to form elongated particles including the first material adjacent one end and the second material adjacent the opposite end. One of the materials is a magnetically soft material having relatively low coercivity whereas the other material is a magnetically hard material having relatively high coercivity. The particles have dimensions transverse to their axes of elongation smaller than the magnetic domain size of the magnetically soft material.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: November 23, 1999
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., John Steinbeck, Robert W. Boerstler, David R. Winn
  • Patent number: 5741435
    Abstract: A static magnetic memory includes a layer having a plurality of vertically oriented and shape-anisotropic elongated ferromagnetic particles. A plurality of writing conductors are adjacent the layer, and the conductors selectively apply magnetic fields to selected regions of the layer by directing electrical current to magnetize the particles in an up or down direction. Static reading means detect the direction of magnetization. The particles may include a soft magnet portion and a hard magnet portion. In another preferred embodiment, a material and a method of making same includes providing a matrix full of elongated holes, depositing a first magnetic material having a first coercivity into the holes, and then depositing a second magnetic material having a second coercivity into the holes to form a composite elongated particle in each hole.
    Type: Grant
    Filed: August 8, 1995
    Date of Patent: April 21, 1998
    Assignee: Nano Systems, Inc.
    Inventors: Charles P. Beetz, Jr., John Steinbeck, Robert W. Boerstler, David R. Winn
  • Patent number: 5168540
    Abstract: A scintillating article comprising a substrate coated with an inorganic scintillating material comprising a doped or undoped material selected from the group consissting of barium fluoride, calcium fluoride, zinc oxide, zinc sulfide, zinc silicate, bismuth germanate, fast cathode ray tube phosphors, yttrium silicate, rare earth silicates, orthosilicates, and mixtures thereof. Also disclosed is an appertaining method of forming such a scintillating article, comprising depositing the inorganic scintillating material by chemical vapor deposition (CVD). In a particularly advantageous embodiment, the substrate is of fibrous form, e.g., a quartz optical quality fiber, which is coated with a scintillating material such as barium fluoride.
    Type: Grant
    Filed: April 26, 1991
    Date of Patent: December 1, 1992
    Assignee: Advanced Technology Materials Inc.
    Inventors: David R. Winn, Peter R. Kirlin