Patents by Inventor David Ring

David Ring has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230089825
    Abstract: A system for generating a shopping checkout list of items selected by a shopper in a store including: in-store security cameras; a cart scanner and a cart analyzer configured to generate a shopping checkout list based on the data received from the cart scanner; and a shopping list builder (SLB) configured to record images from the security cameras of the shopper's activity in the store to form recorded images, wherein, when the SLB requires verification of an item in the generated shopping checkout list, the SLB is further configured to analyze the recorded images to determine selection of an item by a shopper to thereby verify the item on the shopping checkout list.
    Type: Application
    Filed: March 4, 2021
    Publication date: March 23, 2023
    Inventors: Yair Cleper, David Ring
  • Patent number: 11236616
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 4.47-4.77 inch (113.5-121.2 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 2.57-2.87 inch (65.3-72.9 mm). The airfoil element includes at least two of a first mode with a frequency of 297±10% Hz, a second mode with a frequency of 1035±10% Hz, a third mode with a frequency of 1488±10% Hz, a fourth mode with a frequency of 1524±10% Hz, a fifth mode with a frequency of 2855±10% Hz and a sixth mode with a frequency of 4462±10% Hz.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 1, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Kurt R. Heinemann, Sumin Tao, Christopher B. Jelks, Xuedong Zhou, Mark David Ring, Konstantinos Panagiotis Giannakopoulos, Kate Hudon, John Joseph Papalia
  • Publication number: 20210302294
    Abstract: A fire testing device for testing fire-resistance properties of a test subject includes a cavity, a heat source adapted to heat the cavity, and a removable separation plate configured to subdivide the cavity into a first chamber and a second chamber. The heat source is arranged in the first changer and adapted to preheat the first chamber. The second chamber includes an opening adapted to receive the test subject. A fire-resistance test of the test subject may include activating the removable separation plate to subdivide the cavity into the first chamber and the second chamber, arranging the test subject at an opening of the second chamber, preheating the first chamber to a defined temperature using the heat source, deactivating the removable separation plate to provide an undivided cavity, and sustaining a heat supply to the cavity using the heat source.
    Type: Application
    Filed: August 2, 2019
    Publication date: September 30, 2021
    Inventors: Anders Drustrup, David RING, Jeanne Bjerre KIRK, Dan Hvolgaard LAURIDSEN
  • Patent number: 10897669
    Abstract: Aspects of the present disclosure provide multi-layer microphone protection for any apparatus that captures sound. The apparatus includes an enclosure defining a first cavity. A microphone element is coupled to the first cavity. The microphone element comprises a microphone sensor and a microphone cavity. A first, outer protective layer is disposed at an outer end of the first cavity, closer to the external environment. A second, inner protective layer is disposed between an inner end of the first cavity and the microphone element. The second, inner protective layer may protect the microphone sensor from particles or liquids that may have passed through the first protective layer. The first and second layers may have different acoustic properties.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: January 19, 2021
    Assignee: BOSE CORPORATION
    Inventors: Martin David Ring, David-Michael Lozupone, Edwin C. Johnson, Jr., David Glenn Meeker, Michael Ciufo
  • Patent number: 10844727
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 3.68-3.98 inch (93.5-101.1 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span is in a range of 1.75-2.05 inch (44.5-52.1 mm). The airfoil element includes at least two of a first mode with a frequency of 436±10% Hz, a second mode with a frequency of 1557±10% Hz, a third mode with a frequency of 1424±10% Hz, a fourth mode with a frequency of 1870±10% Hz, a fifth mode with a frequency of 3321±10% Hz and a sixth mode with a frequency of 3957±10% Hz.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 24, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Kurt R. Heinemann, Sumin Tao, Christopher B. Jelks, Xuedong Zhou, Mark David Ring, Konstantinos Panagiotis Giannakopoulos, Kate Hudon, John Joseph Papalia
  • Patent number: 10815785
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 2.99-3.29 inch (75.9-83.6 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 1.44-1.74 inch (36.6-44.2 mm). The airfoil element includes at least two of a first mode with a frequency of 430±10% Hz, a second mode with a frequency of 1459±10% Hz, a third mode with a frequency of 2036±10% Hz, a fourth mode with a frequency of 3615±10% Hz, a fifth mode with a frequency of 4722±10% Hz and a sixth mode with a frequency of 5591±10% Hz.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 27, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Kurt R. Heinemann, Sumin Tao, Christopher B. Jelks, Xuedong Zhou, Mark David Ring, Konstantinos Panagiotis Giannakopoulos, Kate Hudon, John Joseph Papalia
  • Patent number: 10801342
    Abstract: A vane cluster for a gas turbine engine includes a first end-of-cluster vane, a second end-of-cluster vane, a neighbor vane adjacent to the second end-of-cluster vane at an interface that includes an angled load interface therebetween; and a multiple of base vanes between the first end-of-cluster vane and the neighbor vane, the angled load interface different than an interface between each of the multiple of base vane.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 13, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Mark David Ring, Scot A Webb, Mark J Rogers, Gerald D Cassella, Charles H Warner, Eric A Kuehne, Jonathan J Earl, Matthew M Zietala, Neil L Tatman, Randall J Butcher, Matthew R Willett, Nicholas R Leslie
  • Patent number: 10774651
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 2.85-3.15 inch (72.4-80.0 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 1.52-1.82 inch (38.6-46.2 mm). The airfoil element includes at least two of a first mode with a frequency of 506±10% Hz, a second mode with a frequency of 1732±10% Hz, a third mode with a frequency of 2268±10% Hz, a fourth mode with a frequency of 4007±10% Hz, a fifth mode with a frequency of 4851±10% Hz and a sixth mode with a frequency of 6416±10% Hz.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 15, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Kurt R. Heinemann, Sumin Tao, Christopher B. Jelks, Xuedong Zhou, Mark David Ring, Konstantinos Panagiotis Giannakopolous, Lisa I. Brilliant
  • Patent number: 10718223
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 1.13-1.23 inch (28.7-31.2 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 0.64-0.74 inch (16.3-18.8 mm). The airfoil element includes at least two of a first mode with a frequency of 1634±10% Hz, a second mode with a frequency of 5611±10% Hz, a third mode with a frequency of 19027±10% Hz, a fourth mode with a frequency of 29268±10% Hz, a fifth mode with a frequency of 33103±10% Hz, a sixth mode with a frequency of 34908±10% Hz and a seventh mode with a frequency of 41277±10% Hz.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: July 21, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Charles H. Warner, William R. Edwards, Mark David Ring, Sean Nolan, Ernest D. Casparie
  • Patent number: 10677266
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 0.63-0.73 inch (16.0-18.5 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 0.61-0.71 inch (15.5-18.0 mm). The airfoil element includes at least two of a first mode with a frequency of 4852±10% Hz, a second mode with a frequency of 11917±10% Hz, a third mode with a frequency of 30842±10% Hz and a fourth mode with a frequency of 35225±10% Hz.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 9, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Charles H. Warner, William R. Edwards, Mark David Ring, Sean Nolan, Ernest D. Casparie
  • Patent number: 10669856
    Abstract: A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 0.75-0.85 inch (19.1-21.6 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span and is in a range of 0.56-0.66 inch (14.2-16.8 mm). The airfoil element includes at least two of a first mode with a frequency of 2740±10% Hz, a second mode with a frequency of 5956±10% Hz, a third mode with a frequency of 6554±10% Hz and a fourth mode with a frequency of 31959±10% Hz.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 2, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Charles H. Warner, William R. Edwards, Mark David Ring, Sean Nolan, Ernest D. Casparie
  • Publication number: 20200053458
    Abstract: Aspects of the present disclosure provide multi-layer microphone protection for any apparatus that captures sound. The apparatus includes an enclosure defining a first cavity. A microphone element is coupled to the first cavity. The microphone element comprises a microphone sensor and a microphone cavity. A first, outer protective layer is disposed at an outer end of the first cavity, closer to the external environment. A second, inner protective layer is disposed between an inner end of the first cavity and the microphone element. The second, inner protective layer may protect the microphone sensor from particles or liquids that may have passed through the first protective layer. The first and second layers may have different acoustic properties.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 13, 2020
    Inventors: Martin David RING, David-Michael LOZUPONE, Edwin C. Johnson, JR., David Glenn Meeker, Michael Ciufo
  • Publication number: 20190309641
    Abstract: A cantilevered mounted singlet vane includes a first outer shroud and a first airfoil. The first outer shroud is provided with a first body having a first body first side and a first body second side axially extending between a first body first end and a first body second end. The first outer shroud defines a first slot axially extends from the first body first end towards a first body end wall disposed at the second end. The first airfoil radially extends from the first outer shroud.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: William R. Edwards, Philip Robert Rioux, Mark David Ring
  • Patent number: 10287919
    Abstract: An assembly includes a first vane pack, a second vane pack, and a liner lock segment. The first vane pack has a plurality of vanes each vane with an airfoil, a platform, and forward and aft mounting hooks. The second vane pack has a plurality of vanes each vane with an airfoil, a platform, and forward and aft mounting hooks. The second vane pack is disposed to abut the first vane pack. The liner lock segment is disposed between the first vane pack and the second vane pack.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 14, 2019
    Assignee: United Technologies Corporation
    Inventors: Mark David Ring, Jonathan Earl, Eric Kuehne
  • Patent number: 10074354
    Abstract: In an active noise reducing headphone, a signal processor applies filters and control gains of both the feed-forward and feedback active noise cancellation signal paths. The signal processor is configured to apply first feed-forward filters to the feed-forward signal path and apply first feedback filters to the feedback signal path during a first operating mode providing effective cancellation of ambient sound, and to apply second feed-forward filters to the feed-forward signal path during a second operating mode providing active hear-through of ambient sounds with ambient naturalness.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 11, 2018
    Assignee: Bose Corporation
    Inventors: Daniel M. Gauger, Jr., Ricardo F. Carreras, Jason Harlow, Neil Adam Ranney, Martin David Ring, Roman Sapiejewski, Vishu Singh
  • Patent number: 9863250
    Abstract: An apparatus includes a substrate having one or more fastener apertures that extend therethrough. Each fastener aperture has a centerline and includes first and second circular segmented regions and a central channeled region. Each circular segmented region has a diameter and a segment length that extends along the centerline, wherein the segment length is greater than one-half the diameter. The central channeled region extends along the centerline between the first and the second circular segmented regions. The central channeled region has a height that is less than the diameter of the first and the second circular segmented regions.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: January 9, 2018
    Assignee: United Technologies Corporation
    Inventors: Kurt R. Heinemann, Mark David Ring
  • Patent number: 9840917
    Abstract: An example stator vane assembly of a turbomachine includes a shroud having a leading edge, a trailing edge, and at least one circumferential edge. The leading edge is circumferentially offset relative to the trailing edge when installed within the turbomachine.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 12, 2017
    Assignee: United Technologies Corporation
    Inventor: Mark David Ring
  • Patent number: 9796880
    Abstract: The present invention pertains to a coating composition based on a specific epoxy-functional siloxane oligomer and an amine-functional polyorganosiloxane. The coating composition is suitable for use on substrates subjected to outdoor conditions, in particular conditions where a high durability, a high UV resistance, and good anti-corrosive properties are required.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: October 24, 2017
    Assignee: AKZO NOBEL COATINGS INTERNATIONAL B.V.
    Inventors: Trevor Michael Wills, Doug Beaumont, David Ring, Tobias Stein
  • Patent number: 9654855
    Abstract: A device includes an ear occlude, an output transducer that is acoustically coupled to an ear canal of a wearer of the device, a voice microphone configured to generate a first electrical signal that is proportional to a voice-generated sound pressure at the microphone, and signal processing circuitry, electrically coupled to the output transducer and the microphone, including a compensator configured to generate, from the first electrical signal, a second electrical signal, and output the second electrical signal to the output transducer, wherein the compensator is tuned to cause GOE, a ratio of a sound pressure within the ear canal to a voice-generated sound pressure at a mouth reference point when the ear is occluded and electronically-aided to be approximately equal to GU, a ratio of the sound pressure within the ear canal to the voice-generated sound pressure at the mouth reference point when the ear is unoccluded.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: May 16, 2017
    Assignee: Bose Corporation
    Inventors: Martin David Ring, Steven H. Isabelle
  • Patent number: 9540955
    Abstract: A stator assembly or a stator stage is disclosed. The stator assembly includes an endless case that is coupled to or includes at least one lug for engaging an anti-rotation stator segment. The anti-rotator segment includes one curved side edge and one straight or linear side edge. The case also accommodates a plurality of middle stator segments, each having curved side edges on both sides. Finally, a third type of stator segment is a “neighbor” stator segment with one curved side edge and one linear side edge that abuttingly engages the linear side edge of the anti-rotation stator segment. The straight or linear side edges of the anti-rotation stator segments and the neighbor stator segments enable an endless case to be loaded with stator segments from an axial direction. None of the stator segments need to be installed from a radial direction.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: January 10, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventor: Mark David Ring