Patents by Inventor David Robert Stark, JR.

David Robert Stark, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11290515
    Abstract: Systems, apparatuses, and methods for implementing real-time, low-latency packetization protocols for live compressed video data are disclosed. A wireless transmitter includes at least a codec and a media access control (MAC) layer unit. In order for the codec to communicate with the MAC layer unit, the codec encodes the compression ratio in a header embedded inside the encoded video stream. The MAC layer unit extracts the compression ratio from the header and determines a modulation coding scheme (MCS) for transferring the video stream based on the compression ratio. The MAC layer unit and the codec also implement a feedback loop such that the MAC layer unit can command the codec to adjust the compression ratio. Since the changes to the video might not be implemented immediately, the MAC layer unit relies on the header to determine when the video data is coming in with the requested compression ratio.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 29, 2022
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ngoc Vinh Vu, Darren Rae Di Cera, Adam William Lynch, Shane Bentley, Douglas Mammoser, David Robert Stark, Jr.
  • Patent number: 11140368
    Abstract: Systems, apparatuses, and methods for scheduling beamforming training during vertical blanking intervals (VBIs) are disclosed. A system includes a transmitter sending a video stream over a wireless link to a receiver. The wireless link between the transmitter and the receiver has capacity characteristics that fluctuate with variations in the environment. To combat the fluctuating capacity characteristics of the link, the transmitter and the receiver perform periodic beamforming training procedures to determine whether to adjust the beamforming characteristics of their respective antennas. To avoid interfering with the video data being sent, the system waits until a VBI to perform a beamforming training procedure. If the beamforming training procedure cannot be completed in a single VBI, then multiple VBIs can be used for performing separate portions of the beamforming training procedure. In one embodiment, the system can perform a beamforming training procedure every N VBIs, where N is a positive integer.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 5, 2021
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ngoc Vinh Vu, David Robert Stark, Jr., Carson Ryley Reece Green
  • Patent number: 10959111
    Abstract: Systems, apparatuses, and methods for implementing enhanced beamforming training procedures are disclosed. A system includes a transmitter communicating over a wireless link with a receiver. To maintain a high quality of transmission over the wireless link, the transmitter and receiver perform periodic beamforming training procedures to test the various sectors of the transmit and receive antennas. In a wide sector sweep procedure, the transmitter and receiver test wide sectors to find the best wide transmit and receive sectors for transferring data. Then in a narrow sector sweep procedure, narrow sectors within and/or adjacent to the best wide sectors are tested, to find the best narrow sectors. This reduces the amount of sectors that are tested during the enhanced beamforming training procedure by skipping those narrow sectors that are far away from the best wide sectors.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 23, 2021
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David Robert Stark, Jr., John Zhong-Chen Li, Carson Ryley Reece Green, Victor Selvaraj
  • Publication number: 20200280862
    Abstract: Systems, apparatuses, and methods for implementing enhanced beamforming training procedures are disclosed. A system includes a transmitter communicating over a wireless link with a receiver. To maintain a high quality of transmission over the wireless link, the transmitter and receiver perform periodic beamforming training procedures to test the various sectors of the transmit and receive antennas. In a wide sector sweep procedure, the transmitter and receiver test wide sectors to find the best wide transmit and receive sectors for transferring data. Then in a narrow sector sweep procedure, narrow sectors within and/or adjacent to the best wide sectors are tested, to find the best narrow sectors. This reduces the amount of sectors that are tested during the enhanced beamforming training procedure by skipping those narrow sectors that are far away from the best wide sectors.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: David Robert Stark, Jr., John Zhong-Chen Li, Carson Ryley Reece Green, Victor Selvaraj
  • Publication number: 20190182308
    Abstract: Systems, apparatuses, and methods for implementing real-time, low-latency packetization protocols for live compressed video data are disclosed. A wireless transmitter includes at least a codec and a media access control (MAC) layer unit. In order for the codec to communicate with the MAC layer unit, the codec encodes the compression ratio in a header embedded inside the encoded video stream. The MAC layer unit extracts the compression ratio from the header and determines a modulation coding scheme (MCS) for transferring the video stream based on the compression ratio. The MAC layer unit and the codec also implement a feedback loop such that the MAC layer unit can command the codec to adjust the compression ratio. Since the changes to the video might not be implemented immediately, the MAC layer unit relies on the header to determine when the video data is coming in with the requested compression ratio.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 13, 2019
    Inventors: Ngoc Vinh Vu, Darren Rae Di Cera, Adam William Lynch, Shane Bentley, Douglas Mammoser, David Robert Stark, JR.
  • Publication number: 20190068926
    Abstract: Systems, apparatuses, and methods for scheduling beamforming training during vertical blanking intervals (VBIs) are disclosed. A system includes a transmitter sending a video stream over a wireless link to a receiver. The wireless link between the transmitter and the receiver has capacity characteristics that fluctuate with variations in the environment. To combat the fluctuating capacity characteristics of the link, the transmitter and the receiver perform periodic beamforming training procedures to determine whether to adjust the beamforming characteristics of their respective antennas. To avoid interfering with the video data being sent, the system waits until a VBI to perform a beamforming training procedure. If the beamforming training procedure cannot be completed in a single VBI, then multiple VBIs can be used for performing separate portions of the beamforming training procedure. In one embodiment, the system can perform a beamforming training procedure every N VBIs, where N is a positive integer.
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Inventors: Ngoc Vinh Vu, David Robert Stark, JR., Carson Ryley Reece Green