Patents by Inventor David Russell Barton, III

David Russell Barton, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230350266
    Abstract: We utilize high-quality-factor (high-Q) metasurfaces patterned either in or adjacent to electro-optical or thermo-optical materials such as lithium niobate, barium titanate, or thermally-sensitive polymers. The metasurface includes nanoantennas that act as dipole emitters; the particular structure and arrangement of nanoantennas can steer light to particular directions or focus light, The electromagnetic metasurface supports one or more guided mode resonances. The metasurface also includes a perturbation superposed on the metasurface features and configured to couple free-space radiation to the guided mode resonances.
    Type: Application
    Filed: September 15, 2021
    Publication date: November 2, 2023
    Inventors: Jennifer A. Dionne, Mark Lawrence, David Russell Barton III, Elissa Klopfer, Sahil Dagli
  • Publication number: 20230299551
    Abstract: Self-isolated lasers are provided by using a chiral metasurface in combination with a spin-selective gain medium and symmetry-breaking (i.e., not linearly polarized) optical pumping. In preferred embodiments the chiral metasurface is resonant, thereby proving an integrated optical resonator to support lasing. The chiral metasurface can be the spin-selective gain medium, or it can be formed on a surface of the spin-selective gain medium, or it can be distinct from the spin-selective gain medium.
    Type: Application
    Filed: August 16, 2021
    Publication date: September 21, 2023
    Inventors: Jefferson Dixon, Mark Lawrence, David Russell Barton III, Jennifer A. Dionne
  • Patent number: 11487180
    Abstract: A metasurface optical device composed of three stacked dielectric layers which form an anti-reflective structure for wavelengths in a predetermined operational wavelength range within the visible spectrum. The anti-reflective structure contains a rectangular lattice of rhombohedral perturbations that produce guided-mode resonances within the predetermined operational wavelength range. The guided-mode-resonant dielectric metasurface device is capable of detecting by colorimetric readout the presence and orientation of a linearly birefringent anisotropic medium, such as a fibrous tissue, positioned above the stacked dielectric layers.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: November 1, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jennifer A. Dionne, Lisa V. Poulikakos, Mark Lawrence, David Russell Barton, III
  • Patent number: 11391866
    Abstract: High quality factor electromagnetic metasurfaces are provided. The metasurface is configured to have in plane guided-mode resonances (e.g., corresponding to waveguide modes or the like). Coupling features are included in the metasurface that are configured to couple free-space radiation to the guided mode resonances. The resulting structures have a high-Q response to free-space radiation and can be used for various applications, such as beam splitting, beam steering, and beam focusing or defocusing.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: July 19, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David Russell Barton, III, Mark Lawrence, Jennifer A. Dionne, Jefferson Dixon
  • Publication number: 20210132255
    Abstract: High quality factor electromagnetic metasurfaces are provided. The metasurface is configured to have in plane guided-mode resonances (e.g., corresponding to waveguide modes or the like). Coupling features are included in the metasurface that are configured to couple free-space radiation to the guided mode resonances. The resulting structures have a high-Q response to free-space radiation and can be used for various applications, such as beam splitting, beam steering, and beam focusing or defocusing.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 6, 2021
    Inventors: David Russell Barton, III, Mark Lawrence, Jennifer A. Dionne, Jefferson Dixon
  • Publication number: 20210088819
    Abstract: A metasurface optical device composed of three stacked dielectric layers which form an anti-reflective structure for wavelengths in a predetermined operational wavelength range within the visible spectrum. The anti-reflective structure contains a rectangular lattice of rhombohedral perturbations that produce guided-mode resonances within the predetermined operational wavelength range. The guided-mode-resonant dielectric metasurface device is capable of detecting by colorimetric readout the presence and orientation of a linearly birefringent anisotropic medium, such as a fibrous tissue, positioned above the stacked dielectric layers.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 25, 2021
    Inventors: Jennifer A. Dionne, Lisa V. Poulikakos, Mark Lawrence, David Russell Barton, III