Patents by Inventor David S. Dandy

David S. Dandy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230294086
    Abstract: An assay device includes a colorimetric testing assembly including a detection area, a fluid inlet, and a microfluidic network including a first path extending to the detection area and a second path extending to the detection area. When a fluid (e.g., a buffer fluid or a combined buffer and sample solution) is provided to the fluid inlet, a first portion of the fluid rehydrates a first dried reagent (e.g., a dried enzyme label) disposed along the first path to produce a first rehydrated reagent and a second portion of the fluid rehydrates a second dried reagent (e.g., a dried substrate) to produce a second rehydrated reagent. The first rehydrated reagent and the second rehydrated reagent are then sequentially delivered to the detection area by capillary-driven flow to perform the assay.
    Type: Application
    Filed: July 29, 2021
    Publication date: September 21, 2023
    Inventors: Charles S. Henry, Brian J. Geiss, David S. Dandy, Cody Carrell, Jeremy Link, Isabelle Samper, Ana Sanchez-Cano, Ilhoon Jang, Zachary Call
  • Publication number: 20230294091
    Abstract: An assay device includes an electrochemical testing assembly having a test channel including a capture reagent selected to capture a target analyte and an electrode having a surface in communication with the test channel. The assay device further includes a microfluidic network in communication with the test channel, a buffer fluid inlet in communication with the microfluidic network, and a detection reagent disposed within the microfluidic network. When a buffer fluid is provided to the buffer fluid inlet, the buffer fluid transports the detection reagent to the test channel by capillary-driven flow, and wherein the electrode is configured to measure an electrical response indicating capture of the target analyte by the capture reagent after transportation of the detection reagent to the test channel.
    Type: Application
    Filed: July 29, 2021
    Publication date: September 21, 2023
    Applicant: COLORADO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: CHARLES S. HENRY, BRIAN J. GEISS, ILHOON JANG, ISABELLE SAMPER, ANA SANCHEZ-CANO, DAVID S. DANDY
  • Publication number: 20230101834
    Abstract: The invention discloses a method and a system to detect a target nucleic acid sequence in a sample using padlock probe-based rolling circle amplification and nuclease protection. Padlock probe-based rolling circle amplification and nuclease protection may be used in combination with other detection assays to detect target nucleic acid sequences in a sample.
    Type: Application
    Filed: March 14, 2021
    Publication date: March 30, 2023
    Inventors: Brian J. GEISS, Charles S. HENRY, David S. DANDY, Sidhartha JAIN, Devon OSBOURNE
  • Patent number: 10024797
    Abstract: Herein disclosed are biosensing systems that measure lactose concentration in a solution.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 17, 2018
    Assignee: Colorado State University Research Foundation
    Inventors: Kenneth F. Reardon, David S. Dandy, Ryan E. Holcomb
  • Patent number: 9891167
    Abstract: A waveguide sensor capable of direct, real-time detection and monitoring of analytes in the vicinity of the waveguide surface without requiring the tagging or labeling of the analyte, is described. Analytic and numerical calculations have predicted that by locally detecting either changes in the evanescent field or changes in the light coupled out of the waveguide as a result of the presence of the analyte, high detection sensitivity will be able to be achieved.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: February 13, 2018
    Assignee: Colorado State University Research Foundation
    Inventors: Kevin L. Lear, David S. Dandy, Matthew D. Stephens, Guangwei Yuan
  • Publication number: 20170009270
    Abstract: Enzymatic biosensors and methods of producing distal tips for biosensor transducers for use in detecting one or more analytes selected from organic compounds susceptible to dehalogenation, organic compounds susceptible to oxygenation and organophosphate compounds susceptible to hydrolysis are disclosed herein, as well as biosensor arrays, methods of detecting and quantifying analytes within a mixture, and devices and methods for delivering reagents to enzymes disposed within the distal tip of a biosensor.
    Type: Application
    Filed: September 26, 2016
    Publication date: January 12, 2017
    Inventors: Kenneth F. REARDON, David S. DANDY, Thomas K. WOOD, Michael FRITZSCHE
  • Patent number: 9493805
    Abstract: Enzymatic biosensors and methods of producing distal tips for biosensor transducers for use in detecting one or more analytes selected from organic compounds susceptible to dehalogenation, organic compounds susceptible to oxygenation and organophosphate compounds susceptible to hydrolysis are disclosed herein, as well as biosensor arrays, methods of detecting and quantifying analytes within a mixture, and devices and methods for delivering reagents to enzymes disposed within the distal tip of a biosensor.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: November 15, 2016
    Assignee: COLORADO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Kenneth F. Reardon, David S. Dandy, Michael Fritzsche, Thomas K. Wood
  • Publication number: 20160131580
    Abstract: A waveguide sensor capable of direct, real-time detection and monitoring of analytes in the vicinity of the waveguide surface without requiring the tagging or labeling of the analyte, is described. Analytic and numerical calculations have predicted that by locally detecting either changes in the evanescent field or changes in the light coupled out of the waveguide as a result of the presence of the analyte, high detection sensitivity will be able to be achieved.
    Type: Application
    Filed: October 27, 2015
    Publication date: May 12, 2016
    Inventors: Kevin L. Lear, David S. Dandy, Matthew D. Stephens, Guangwei Yuan
  • Patent number: 9176059
    Abstract: A waveguide sensor capable of direct, real-time detection and monitoring of analytes in the vicinity of the waveguide surface without requiring the tagging or labeling of the analyte, is described. Analytic and numerical calculations have predicted that by locally detecting either changes in the evanescent field or changes in the light coupled out of the waveguide as a result of the presence of the analyte, high detection sensitivity will be able to be achieved.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 3, 2015
    Assignee: COLORADO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Kevin L. Lear, David S. Dandy, Matthew D. Stephens, Guangwei Yuan
  • Publication number: 20130244266
    Abstract: Herein disclosed are biosensing systems that measure lactose concentration in a solution.
    Type: Application
    Filed: November 22, 2011
    Publication date: September 19, 2013
    Inventors: Kenneth F. Reardon, David S. Dandy, Ryan E. Holcomb
  • Publication number: 20130102090
    Abstract: A waveguide sensor capable of direct, real-time detection and monitoring of analytes in the vicinity of the waveguide surface without requiring the tagging or labeling of the analyte, is described. Analytic and numerical calculations have predicted that by locally detecting either changes in the evanescent field or changes in the light coupled out of the waveguide as a result of the presence of the analyte, high detection sensitivity will be able to be achieved.
    Type: Application
    Filed: December 12, 2012
    Publication date: April 25, 2013
    Inventors: Kevin L. Lear, David S. Dandy, Matthew D. Stephens, Guangwei Yuan
  • Patent number: 8349605
    Abstract: A waveguide sensor capable of direct, real-time detection and monitoring of analytes in the vicinity of the waveguide surface without requiring the tagging or labeling of the analyte, is described. Analytic and numerical calculations have predicted that by locally detecting either changes in the evanescent field or changes in the light coupled out of the waveguide as a result of the presence of the analyte, high detection sensitivity will be able to be achieved.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 8, 2013
    Assignee: Colorado State University Research Foundation
    Inventors: Kevin L. Lear, David S. Dandy, Matthew D. Stephens, Guangwei Yuan
  • Publication number: 20090026092
    Abstract: Enzymatic biosensors and methods of producing distal tips for biosensor transducers for use in detecting one or more analytes selected from organic compounds susceptible to dehalogenation, organic compounds susceptible to oxygenation and organophosphate compounds susceptible to hydrolysis are disclosed herein, as well as biosensor arrays, methods of detecting and quantifying analytes within a mixture, and devices and methods for delivering reagents to enzymes disposed within the distal tip of a biosensor.
    Type: Application
    Filed: April 9, 2008
    Publication date: January 29, 2009
    Inventors: Kenneth F. REARDON, David S. DANDY, Michael FRITZSCHE, Thomas K. WOOD