Patents by Inventor David S. Ensor

David S. Ensor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11714075
    Abstract: A chemical sensor and a system and method for sensing a chemical species. The chemical sensor includes a plurality of nanofibers whose electrical impedance varies upon exposure to the chemical species, a substrate supporting and electrically isolating the fibers, a set of electrodes connected to the plurality of fibers at spatially separated points to permit the electrical impedance of the plurality of fibers to be measured, and a membrane encasing the fibers and having a thickness ranging from 50 ?m to 5.0 mm. The system includes the chemical sensor, an impedance measuring device coupled to the electrodes and configured to determine an electrical impedance of the plurality of fibers, and an analyzer configured to identify the chemical species based on a change in the electrical impedance.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: August 1, 2023
    Assignee: Research Triangle Institute
    Inventors: David S. Ensor, Li Han
  • Publication number: 20210181172
    Abstract: A chemical sensor and a system and method for sensing a chemical species. The chemical sensor includes a plurality of nanofibers whose electrical impedance varies upon exposure to the chemical species, a substrate supporting and electrically isolating the fibers, a set of electrodes connected to the plurality of fibers at spatially separated points to permit the electrical impedance of the plurality of fibers to be measured, and a membrane encasing the fibers and having a thickness ranging from 50 ?m to 5.0 mm. The system includes the chemical sensor, an impedance measuring device coupled to the electrodes and configured to determine an electrical impedance of the plurality of fibers, and an analyzer configured to identify the chemical species based on a change in the electrical impedance.
    Type: Application
    Filed: September 25, 2020
    Publication date: June 17, 2021
    Inventors: David S. Ensor, Li Han
  • Patent number: 10876145
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: December 29, 2020
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Patent number: 10845349
    Abstract: A chemical sensor and a system and method for sensing a chemical species. The chemical sensor includes a plurality of nanofibers whose electrical impedance varies upon exposure to the chemical species, a substrate supporting and electrically isolating the fibers, a set of electrodes connected to the plurality of fibers at spatially separated points to permit the electrical impedance of the plurality of fibers to be measured, and a membrane encasing the fibers and having a thickness ranging from 50 ?m to 5.0 mm. The system includes the chemical sensor, an impedance measuring device coupled to the electrodes and configured to determine an electrical impedance of the plurality of fibers, and an analyzer configured to identify the chemical species based on a change in the electrical impedance.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: November 24, 2020
    Assignee: RESEARCH TRIANGLE INSTITUTE
    Inventors: David S. Ensor, Li Han
  • Publication number: 20200347434
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Application
    Filed: May 27, 2020
    Publication date: November 5, 2020
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Patent number: 10767210
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 8, 2020
    Assignee: Research Triangle, Inc.
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Publication number: 20200166494
    Abstract: A chemical sensor and a system and method for sensing a chemical species. The chemical sensor includes a plurality of nanofibers whose electrical impedance varies upon exposure to the chemical species, a substrate supporting and electrically isolating the fibers, a set of electrodes connected to the plurality of fibers at spatially separated points to permit the electrical impedance of the plurality of fibers to be measured, and a membrane encasing the fibers and having a thickness ranging from 50 ?m to 5.0 mm. The system includes the chemical sensor, an impedance measuring device coupled to the electrodes and configured to determine an electrical impedance of the plurality of fibers, and an analyzer configured to identify the chemical species based on a change in the electrical impedance.
    Type: Application
    Filed: September 24, 2019
    Publication date: May 28, 2020
    Inventors: David S. Ensor, Li Han
  • Patent number: 10481070
    Abstract: Sample monitoring and flow control systems and methods are disclosed for monitoring of airborne particulates. A system may include a particle collection filter. The system also includes a fluid moving device for moving a sample through the particle collection filter. Further, the system includes a light source configured to direct irradiating light towards the particle collection filter. The system also includes a light detector positioned to receive the irradiating light passing through the particle collection filter and configured to generate a signal representative of an amount of the received light. Further, the system includes a controller configured to receive the signal and to control the fluid moving device based on the amount of the received light.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 19, 2019
    Assignee: Research Triangle Institute
    Inventors: Anthony Clint Clayton, Howard Jerome Walls, David S. Ensor, Andrei Yurievich Khlystov
  • Publication number: 20190330675
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 31, 2019
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Publication number: 20190257737
    Abstract: Sample monitoring and flow control systems and methods are disclosed for monitoring of airborne particulates. A system may include a particle collection filter. The system also includes a fluid moving device for moving a sample through the particle collection filter. Further, the system includes a light source configured to direct irradiating light towards the particle collection filter. The system also includes a light detector positioned to receive the irradiating light passing through the particle collection filter and configured to generate a signal representative of an amount of the received light. Further, the system includes a controller configured to receive the signal and to control the fluid moving device based on the amount of the received light.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Anthony Clint Clayton, Howard Jerome Walls, David S. Ensor, Andrei Yurievich Khlystov
  • Patent number: 10378042
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: August 13, 2019
    Assignee: Research Triangle Institute, Inc.
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Patent number: 10345216
    Abstract: Sample monitoring and flow control systems and methods are disclosed for monitoring of airborne particulates. A system may include a particle collection filter. The system also includes a fluid moving device for moving a sample through the particle collection filter. Further, the system includes a light source configured to direct irradiating light towards the particle collection filter. The system also includes a light detector positioned to receive the irradiating light passing through the particle collection filter and configured to generate a signal representative of an amount of the received light. Further, the system includes a controller configured to receive the signal and to control the fluid moving device based on the amount of the received light.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: July 9, 2019
    Assignee: Research Triangle Institute
    Inventors: Anthony Clint Clayton, Howard Jerome Walls, David S. Ensor, Andrei Yurievich Khlystov
  • Publication number: 20170268980
    Abstract: Sample monitoring and flow control systems and methods are disclosed for monitoring of airborne particulates. A system may include a particle collection filter. The system also includes a fluid moving device for moving a sample through the particle collection filter. Further, the system includes a light source configured to direct irradiating light towards the particle collection filter. The system also includes a light detector positioned to receive the irradiating light passing through the particle collection filter and configured to generate a signal representative of an amount of the received light. Further, the system includes a controller configured to receive the signal and to control the fluid moving device based on the amount of the received light.
    Type: Application
    Filed: August 20, 2015
    Publication date: September 21, 2017
    Inventors: Anthony Clint Clayton, Howard Jerome Walls, David S. Ensor, Andrei Yurievich Khlystov
  • Patent number: 9598282
    Abstract: A chemical sensor and a system and method for sensing a chemical species. The chemical sensor includes a plurality of nanofibers whose electrical impedance varies upon exposure to the chemical species, a substrate supporting and electrically isolating the fibers, and a set of electrodes connected to the plurality of fibers at spatially separated points to permit the electrical impedance of the plurality of fibers to be measured. The system includes the chemical sensor, an impedance measuring device coupled to the electrodes and configured to determine an electrical impedance of the plurality of fibers, and an analyzer configured to identify the chemical species based on a change in the electrical impedance. The method measures at least one change in an electrical impedance between spatially separated electrodes, and identifies the chemical species based on the measured change in the electrical impedance.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 21, 2017
    Assignee: RESEARCH TRIANGLE INSTITUTE
    Inventors: Li Han, Anthony L. Andrady, David S. Ensor
  • Publication number: 20160195488
    Abstract: A chemical sensor and a system and method for sensing a chemical species. The chemical sensor includes a plurality of nanofibers whose electrical impedance varies upon exposure to the chemical species, a substrate supporting and electrically isolating the fibers, a set of electrodes connected to the plurality of fibers at spatially separated points to permit the electrical impedance of the plurality of fibers to be measured, and a membrane encasing the fibers and having a thickness ranging from 50 ?m to 5.0 mm. The system includes the chemical sensor, an impedance measuring device coupled to the electrodes and configured to determine an electrical impedance of the plurality of fibers, and an analyzer configured to identify the chemical species based on a change in the electrical impedance.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 7, 2016
    Applicant: RESEARCH TRIANGLE INSTITUTE
    Inventors: David S. ENSOR, Li HAN
  • Publication number: 20150024379
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 22, 2015
    Applicants: RESEARCH TRIANGLE INSTITUTE, AEROSOL DYNAMICS INC.
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Patent number: 8847487
    Abstract: A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength ?. The average fiber diameter is comparable in size to the wavelength ? in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Research Triangle Insitute
    Inventors: James Lynn Davis, Anthony L. Andrady, David S. Ensor, Li Han, Howard J. Walls
  • Publication number: 20140287230
    Abstract: A fiber media and a filter device. The fiber media has a plurality of nanofibers formed of a polymer material, having diameters less than 1 micron, and formed into a fiber mat. A barrier layer is disposed on the nanofibers to prevent dissolution of the nanofibers in the fiber mat upon exposure of the fiber mat to a solvent of the polymer material. The barrier layer coated nanofibers have a maximum strain before breakage of at least 2%. The filter device includes the fiber media and a support attached to the fiber mat.
    Type: Application
    Filed: November 9, 2012
    Publication date: September 25, 2014
    Applicants: RESEARCH TRIANGLE INSTITUTE, NORTH CAROLINA STATE UNIVERSITY
    Inventors: Howard J. Walls, David S. Ensor, Christopher J. Oldham, Gregory N. Parsons
  • Patent number: 8652229
    Abstract: A filtration device including a filtration medium having a plurality of nanofibers of diameters less than 1 micron formed into a fiber mat in the presence of an abruptly varying electric field. The filtration device includes a support attached to the filtration medium and having openings for fluid flow therethrough. A device for making a filter material. The device includes an electrospinning element configured to electrospin a plurality of fibers from a tip of the electrospinning element, a collector opposed to the electrospinning element configured to collect electrospun fibers on a surface of the collector, and an electric field modulation device configured to abruptly vary an electric field at the collector at least once during electrospinning of the fibers. A method for making a filter material.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: February 18, 2014
    Assignee: Research Triangle Institute
    Inventors: David S. Ensor, Howard J. Walls, Anthony L. Andrady, Teri A. Walker
  • Patent number: 8632721
    Abstract: Apparatus and method for producing fibrous materials in which the apparatus includes an extrusion element configured to electrospin a substance from which the fibers are to be composed by an electric field extraction of the substance from a tip of the extrusion element, a collector disposed from the extrusion element and configured to collect the fibers, a chamber enclosing the collector and the extrusion element, and a control mechanism configured to control a gaseous environment in which the fibers are to be electrospun. The apparatus and method provide a way to produce a fiber collection having a plurality of nanofibers disposed in relation to each other. The nanofibers in the fiber collection are preferentially oriented along a longitudinal axis of the fiber collection.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 21, 2014
    Assignee: Research Triangle Institute
    Inventors: Anthony L. Andrady, David S. Ensor, Randall J. Newsome