Patents by Inventor David S Freedman

David S Freedman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220137055
    Abstract: A spectral reflectance imaging device for detecting nanoparticle exosome biomarker targets includes an illumination source that illuminates a substrate with a plurality of separate wavelengths of incoherent light. The substrate includes an oxide layer and a binding agent to selectively bind nanoparticle exosome biomarker targets to the substrate. An imaging device bindings the light reflected from or transmitted through the substrate and an image processing system detects the nanoparticle exosome biomarker targets a function of the change in reflective properties of the substrate.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: George Daaboul, David S. Freedman
  • Patent number: 11262359
    Abstract: A spectral reflectance imaging device for detecting nanoparticle exosome biomarker targets includes an illumination source that illuminates a substrate with a plurality of separate wavelengths of incoherent light. The substrate includes an oxide layer and a binding agent to selectively bind nanoparticle exosome biomarker targets to the substrate. An imaging device bindings the light reflected from or transmitted through the substrate and an image processing system detects the nanoparticle exosome biomarker targets a function of the change in reflective properties of the substrate.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 1, 2022
    Assignee: NanoView Biosciences, Inc.
    Inventors: George Daaboul, David S. Freedman
  • Publication number: 20210364412
    Abstract: Presented herein are compositions, systems, and methods related to optical substrates that simultaneous (1) enhance a fluorescence signal emitted by a fluorophore and (2) enhance “contrast” signal that comprises scattered signal intensity over substrate reflectivity at a non-fluorescent wavelength. In certain embodiments, the optical substrate comprises a thin, transparent, dielectric layer. In alternative embodiments, the optical substrate comprises a stack of thin, transparent dielectric layers, for example, that is designed for both specific scattering enhancement and fluorescence enhancement.
    Type: Application
    Filed: May 31, 2019
    Publication date: November 25, 2021
    Inventors: George G. Daaboul, David S. Freedman, Amit Deliwala
  • Patent number: 10585042
    Abstract: A system for analyzing one or more liquid samples includes a microwell plate including a plurality of rows of wells configured to store liquid samples, a sensor array that is moveable relative to the microwell plate along a first axis between a first position and a second position to allow a portion of the sensor array to be disposed within a first one of the plurality of rows of wells when the sensor array is in the second position, an objective, and one or more linear translation stages configured to move the microwell plate relative to the objective (i) along a second axis that is orthogonal to the first axis, (ii) along a third axis that is orthogonal to the first axis and the second axis, or (iii) both (i) and (ii).
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 10, 2020
    Assignees: TRUSTEES OF BOSTON UNIVERSITY, NANOVIEW BIOSCIENCES, INC.
    Inventors: M. Selim Ünlü, Derin Sevenler, Jacob Trueb, Oguzhan Avci, Celalettin Yurdakul, Steven Scherr, George G. Daaboul, David S. Freedman
  • Publication number: 20190376896
    Abstract: A system for analyzing one or more liquid samples includes a microwell plate including a plurality of rows of wells configured to store liquid samples, a sensor array that is moveable relative to the microwell plate along a first axis between a first position and a second position to allow a portion of the sensor array to be disposed within a first one of the plurality of rows of wells when the sensor array is in the second position, an objective, and one or more linear translation stages configured to move the microwell plate relative to the objective (i) along a second axis that is orthogonal to the first axis, (ii) along a third axis that is orthogonal to the first axis and the second axis, or (iii) both (i) and (ii).
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Inventors: M. SELIM ÜNLÜ, DERIN SEVENLER, JACOB TRUEB, OGUZHAN AVCI, CELALETTIN YURDAKUL, STEVEN SCHERR, GEORGE G. DAABOUL, DAVID S. FREEDMAN
  • Publication number: 20190086416
    Abstract: A spectral reflectance imaging device for detecting nanoparticle exosome biomarker targets includes an illumination source that illuminates a substrate with a plurality of separate wavelengths of incoherent light. The substrate includes an oxide layer and a binding agent to selectively bind nanoparticle exosome biomarker targets to the substrate. An imaging device bindings the light reflected from or transmitted through the substrate and an image processing system detects the nanoparticle exosome biomarker targets a function of the change in reflective properties of the substrate.
    Type: Application
    Filed: February 3, 2017
    Publication date: March 21, 2019
    Applicant: nanoView Diagnostics Inc.
    Inventors: George Daaboul, David S. Freedman
  • Patent number: 9526904
    Abstract: Stimulation of the central nervous system can be useful for treating neurological disorders. Wireless neurostimulating devices have the benefit that they can float in tissue and do not experience the sheering caused by tethering tension that connecting wires impose on the stimulators. An optically powered, logic controlled, CMOS microdevice that can decode telemetry data from an optical packet is a way of implementing wireless, addressable, microstimulators. Through the use of an optical packet, different devices can be addressed for stimulation, allowing spatially selective activation of neural tissue. The present invention, involves such a neural stimulation device, specifically an optically powered CMOS circuit that decodes telemetry data and determines whether it has been addressed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 27, 2016
    Assignee: New Jersey Institute of Technology
    Inventors: Mesut Sahin, Selim Unlu, David S Freedman, Ammar R Abdo
  • Publication number: 20130338731
    Abstract: Stimulation of the central nervous system can be useful for treating neurological disorders. Wireless neurostimulating devices have the benefit that they can float in tissue and do not experience the sheering caused by tethering tension that connecting wires impose on the stimulators. An optically powered, logic controlled, CMOS microdevice that can decode telemetry data from an optical packet is a way of implementing wireless, addressable, microstimulators. Through the use of an optical packet, different devices can be addressed for stimulation, allowing spatially selective activation of neural tissue. The present invention, involves such a neural stimulation device, specifically an optically powered CMOS circuit that decodes telemetry data and determines whether it has been addressed.
    Type: Application
    Filed: April 26, 2013
    Publication date: December 19, 2013
    Inventors: Mesut Sahin, Selim Unlu, David S Freedman, Ammar R. Abdo