Patents by Inventor David S. Hall

David S. Hall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230029852
    Abstract: Provided are methods of preparing 3-R-1,4,2-dioxazol-5-one compounds using convenient and efficient methods. Also provided are 3-R-1,4,2-dioxazol-5-one compounds produced using the methods described.
    Type: Application
    Filed: June 30, 2022
    Publication date: February 2, 2023
    Inventors: David S. Hall, Jeffery Raymond Dahn, Toren Hynes
  • Patent number: 11561305
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 24, 2023
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Patent number: 11550036
    Abstract: Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is greater than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some embodiments, the multi-pulse illumination beam is encoded and the return measurement pulse sequence is decoded to distinguish the measurement pulse sequence from exogenous signals.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: January 10, 2023
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Pieter J. Kerstens
  • Patent number: 11550056
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: January 10, 2023
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20230003579
    Abstract: Described herein are systems and methods that may efficiently detect multi-return light signals. A light detection and ranging system, such as a LIDAR system, may fire a laser beam that may hit multiple objects with a different distance in one line, causing multi-return light signals to be received by the system. Multi-return detectors may be able to analyze the peak magnitude of a plurality of peaks in the return signals and determine a multitude of peaks, such as the first peak, the last peak and the maximum peak. One embodiment to detect the multi-return light signals may be a multi-return recursive matched filter detector. This detector comprises a matched filter, peak detector, centroid calculation and a zeroing out function. Other embodiments may be based on a maximum finder that algorithmically selects the highest magnitude peaks from samples of the return signal and buffers for regions of interests peaks.
    Type: Application
    Filed: February 18, 2022
    Publication date: January 5, 2023
    Inventors: Kiran Kumar Gunnam, Kanke Gao, Nitinkumar Sagarbhai Barot, Anand Gopalan, David S. Hall
  • Publication number: 20220326763
    Abstract: LiDAR-based immersive 3D reality capture systems and methods are disclosed. The reality capture system includes a set of LiDAR sensors disposed around an environment and configured to capture one or more events occurring within the environment. The reality capture system also includes a corresponding set of cameras disposed around the environment. Each camera is mounted on a same gimbal with a corresponding LiDAR sensor and has a same optical axis as the corresponding LiDAR sensor. The reality capture system further includes a base station viewpoint generator coupled to the set of LiDAR sensors and the cameras to generate a video feed based on data received from the LiDAR sensors and the cameras. The reality capture system additionally includes a virtual reality device coupled to the base station viewpoint generator to receive and display the video feed generated by the base station viewpoint generator.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 13, 2022
    Inventors: Mathew Noel Rekow, David S. Hall, Sunil Kumar Singh Khatana, Sharath Nair, John Kua
  • Patent number: 11435446
    Abstract: Methods and systems for combining return signals from multiple channels of a LIDAR measurement system are described herein. In one aspect, the outputs of multiple receive channels are electrically coupled before input to a single channel of an analog to digital converter. In another aspect, a DC offset voltage is provided at the output of each transimpedance amplifier of each receive channel to improve measured signal quality. In another aspect, a bias voltage supplied to each photodetector of each receive channel is adjusted based on measured temperature to save power and improve measurement consistency. In another aspect, a bias voltage supplied to each illumination source of each transmit channel is adjusted based on measured temperature. In another aspect, a multiplexer is employed to multiplex multiple sets of output signals of corresponding sets of receive channels before analog to digital conversion.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: September 6, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Rajanatha Shettigara, Nathan Slattengren, Aaron Chen, Anand Gopalan
  • Patent number: 11384058
    Abstract: Provided are methods of preparing 3-R-1,4,2-dioxazol-5-one compounds using convenient and efficient methods. Also provided are 3-R-1,4,2-dioxazol-5-one compounds produced using the methods described.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: July 12, 2022
    Assignees: PANASONIC HOLDINGS CORPORATION, TESLA, INC.
    Inventors: David S. Hall, Jeffery Raymond Dahn, Toren Hynes
  • Patent number: 11294041
    Abstract: Described herein are systems and methods for improving detection of a return signal in a light ranging and detection system. The system comprises a transmitter and a receiver. A first sequence of pulses may be encoded with an anti-spoof signature and transmitted in a laser beam. A return signal, comprising a second sequence of pulses, may be received by the receiver and the anti-spoof signature extracted from the second sequence of pulses. If based on the extraction, the first and second sequences of pulses match, the receiver outputs return signal data. If based on the extraction, the first and second sequence of pulses do not match, the return signal is disregarded. The system may dynamically change the anti-spoofing signature for subsequent sequences of pulses. Additionally, the first sequence of pulses may be randomized relative to a prior sequence of pulses.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: April 5, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Anand Gopalan
  • Publication number: 20220075038
    Abstract: A LiDAR system includes an optical transmitter, a scanner, a segmented optical detector including discrete sense nodes distributed along its length, and a controller. The optical transmitter can transmit a ranging signal via an optical component of the scanner. The scanner can change a position and/or orientation of the optical component after the ranging signal is transmitted. The segmented optical detector can receive the return signal corresponding to the ranging signal via the optical component after the change in the position and/or orientation of the optical component. The controller can detect a location of a return spot of the return signal based on outputs of the discrete sense nodes. The controller can determine a distance to an object that reflected the return signal based on the location of the return spot and a residual time of flight of the return signal.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 10, 2022
    Inventors: David S. Hall, Mathew Rekow, Nikhil Naikal, Sunil Khatana, Stephen S. Nestinger, Anand Gopalan
  • Publication number: 20220057510
    Abstract: Apparatus and methods for aligning circuit boards (e.g., for LIDAR systems) are disclosed. According to one embodiment, an electronic device comprises a secondary device and a coupling device coupled to the secondary device. The coupling device comprises a plurality of conductive members, including a first conductive member and a second conductive member. Each of the conductive members comprises a first end configured to electrically and mechanically couple to a primary circuit board and a second end electrically and mechanically coupled to the secondary device. Each of the plurality of conductive members has an attribute adjustable in response to a condition being added to the respective conductive member, and is configured to maintain the adjusted attribute after the condition is removed.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: David S. Hall, Anand Gopalan, Cristhian Octavio Reyes, Thomas Richardson Tewell, Mathew Noel Rekow
  • Patent number: 11255728
    Abstract: Described herein are systems and methods that may efficiently detect multi-return light signals. A light detection and ranging system, such as a LiDAR system, may fire a laser beam that may hit multiple objects with a different distance in one line, causing multi-return light signals to be received by the system. Multi-return detectors may be able to analyze the peak magnitude of a plurality of peaks in the return signals and determine a multitude of peaks, such as the first peak, the last peak and the maximum peak. One embodiment to detect the multi-return light signals may be a multi-return recursive matched filter detector. This detector comprises a matched filter, peak detector, centroid calculation and a zeroing out function. Other embodiments may be based on a maximum finder that algorithmically selects the highest magnitude peaks from samples of the return signal and buffers for regions of interests peaks.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 22, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: Kiran Kumar Gunnam, Kanke Gao, Nitinkumar Sagarbhai Barot, Anand Gopalan, David S. Hall
  • Publication number: 20220026575
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Application
    Filed: June 22, 2021
    Publication date: January 27, 2022
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Publication number: 20210405196
    Abstract: Methods and systems for performing three-dimensional (3-D) LIDAR measurements with multiple illumination beams scanned over a 3-D environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the 3-D environment under measurement.
    Type: Application
    Filed: April 19, 2021
    Publication date: December 30, 2021
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Publication number: 20210364609
    Abstract: A scanner of a LiDAR system includes a mirror configured to redirect a light signal emitted by an optical emitter, a first axis scanning system configured to rotate the mirror about a first axis and with respect to the optical emitter, that controls a first angle of emission of the light signal from the LiDAR system into a field of view of the LiDAR system, and a second axis scanning system configured to rotate the mirror about a second axis and with respect to the optical emitter, that controls a second angle of emission of the light signal from the LiDAR system into the field of view. The first axis scanning mechanism is configured to rotate the reflective surface of the mirror at least 45 degrees about the first axis.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 25, 2021
    Inventors: David S. Hall, Andrew Janik, Mathew Noel Rekow, Anand Gopalan, Stephen S. Nestinger, William B. Etheridge
  • Patent number: 11169267
    Abstract: Apparatus and methods for aligning circuit boards (e.g., for LIDAR systems) are disclosed. According to one embodiment, an electronic device comprises a secondary device and a coupling device coupled to the secondary device. The coupling device comprises a plurality of conductive members, including a first conductive member and a second conductive member. Each of the conductive members comprises a first end configured to electrically and mechanically couple to a primary circuit board and a second end electrically and mechanically coupled to the secondary device. The second end of the first conductive member is coupled to a first side of the secondary device, and the second end of the second conductive member is coupled to a second side of the secondary device. The second side of the secondary device is opposite to the first side of the secondary device.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 9, 2021
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Anand Gopalan, Cristhian Octavio Reyes, Thomas Richardson Tewell, Mathew Noel Rekow
  • Publication number: 20210325520
    Abstract: Systems and methods for calibrating a LiDAR device are disclosed. According to one embodiment, the system comprises a LiDAR device, a continuous curved target at a fixed distance from the LiDAR device, and a calibration controller operable to perform a reflectance over range calibration of the LiDAR device. The LiDAR device scans portions of the continuous curved target at different ranges during the calibration.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Applicant: VELODYNE LIDAR, INC.
    Inventors: Zhongping Cai, Geovany Ramirez, Ayush Shah, Shing Leung Luk, Marcus Smith, David S. Hall
  • Patent number: 11137480
    Abstract: Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is greater than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some embodiments, the multi-pulse illumination beam is encoded and the return measurement pulse sequence is decoded to distinguish the measurement pulse sequence from exogenous signals.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 5, 2021
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: David S. Hall, Pieter J. Kerstens
  • Patent number: RE48666
    Abstract: A LiDAR-based 3-D point cloud measuring system includes a base, a housing, a plurality of photon transmitters and photon detectors contained within the housing, a rotary motor that rotates the housing about the base, and a communication component that allows transmission of signals generated by the photon detectors to external components. In several versions of the invention, the system includes a vertically oriented motherboard, thin circuit boards such as ceramic hybrids for selectively mounting emitters and detectors, a conjoined D-shaped lens array, and preferred firing sequences.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 3, 2021
    Assignee: VELODYNE LIDAR USA, INC.
    Inventor: David S. Hall
  • Patent number: RE48688
    Abstract: A LiDAR-based 3-D point cloud measuring system includes a base, a housing, a plurality of photon transmitters and photon detectors contained within the housing, a rotary motor that rotates the housing about the base, and a communication component that allows transmission of signals generated by the photon detectors to external components. In several versions of the invention, the system includes a vertically oriented motherboard, thin circuit boards such as ceramic hybrids for selectively mounting emitters and detectors, a conjoined D-shaped lens array, and preferred firing sequences.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 17, 2021
    Assignee: Velodyne Lidar USA, Inc.
    Inventor: David S. Hall