Patents by Inventor David S. Hungerford

David S. Hungerford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6886568
    Abstract: Disclosed is a method of growing cells on biodegradable microcarrier particles and more specifically growing chondrocytes for an extended period of time until they aggregate. These aggregated cells can be injected directly or shaped for implantation into the body. In another embodiment of this invention, the cell microcarrier aggregates are grown in a mold that is shaped to conform to the geometry of the desired body part to be replaced. An apparatus for shaping the aggregated cells is disclosed. The aggregated cells can be supplied in a kit.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: May 3, 2005
    Assignees: The Johns Hopkins University, Chrondros, Inc.
    Inventors: Carmelita G. Frondoza, David J. Fink, David S. Hungerford, Alan H. Shikani
  • Publication number: 20040117033
    Abstract: This invention is a method for the implantation of a combination of cells or cell-microcarrier aggregates wherein one component comprises a solid implantable construct and a second component comprises an injectable formulation. For example, in one embodiment, the solid implant may be first implanted to fill the majority of the cavity receiving the implant, and then cells or cell-microcarrier aggregates in an injectable format, with or without the addition of gelling materials to promote rapid gelling in situ, may be injected into spaces surrounding the solid implant in order to secure the solid implant in the site and/or to promote rapid adherence and/or integration of the solid implant to surrounding tissues. Also contemplated in this embodiment is that the cellular composition of the injectable component may differ from that of the solid component.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 17, 2004
    Inventors: Carmelita G. Frondoza, David S. Hungerford, Alan H. Shikani, Abraham J. Domb, David J. Fink, Leonard Bloom
  • Publication number: 20040044408
    Abstract: The invention is directed to the culture of cells, and particularly chondrocytes for purpose of tissue replacement. The cells are cultured on polymer constructs. Integren expression is used as a measure of chondrocyte viability. Chondrocytes are obtained from the knee, nose and ankle cartilage. Mechanical strain is used to propagate chondrocytes, chitosan and arabinogalactan-chitosan are used as scaffolds. Progenitor, pluripotential, stem and mesenchymal cells are operative in this invention.
    Type: Application
    Filed: September 3, 2003
    Publication date: March 4, 2004
    Inventors: David S. Hungerford, Carmelita G. Frondoza, Alan H. Shikani, Abraham J. Domb
  • Patent number: 6662805
    Abstract: This invention is a method for the implantation of a combination of cells or cell-microcarrier aggregates wherein one component comprises a solid implantable construct and a second component comprises an injectable formulation. For example, in one embodiment, the solid implant may be first implanted to fill the majority of the cavity receiving the implant, and then cells or cell-microcarrier aggregates in an injectable format, with or without the addition of gelling materials to promote rapid gelling in situ, may be injected into spaces surrounding the solid implant in order to secure the solid implant in the site and/or to promote rapid adherence and/or integration of the solid implant to surrounding tissues. Also contemplated in this embodiment is that the cellular composition of the injectable component may differ from that of the solid component.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: December 16, 2003
    Assignees: The Johns Hopkins University, Chondros, Inc.
    Inventors: Carmelita G. Frondoza, David S. Hungerford, Alan H. Shikani, Abraham J. Domb, David J. Fink, Leonard Bloom
  • Patent number: 6637437
    Abstract: The invention is directed to the culture of cells, and particularly chondrocytes for purpose of tissue replacement. The cells are cultured on polymer constructs. Integren expression is used as a measure of chondrocyte viability. Chondrocytes are obtained from the knee, nose and ankle cartilage. Mechanical strain is used to propagate chondrocytes, chitosan and arabinogalactanchitosan are used as scaffolds. Progenitor, pluripotential, stem and mesenchymal cells are operative in this invention.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: October 28, 2003
    Assignees: Johns Hopkins University, Chondros, Inc.
    Inventors: David S. Hungerford, Carmelita G. Frondoza, Alan H. Shikani, Abraham J. Domb
  • Patent number: 6530927
    Abstract: The present invention includes an apparatus and method for cutting a bone including a cutting assembly having a cutting blade, a cutting guide for guiding the shape of the cut in the bone, and a power source for powering the cutting blade. The cutting blade is moveable radially to vary the depth of the cut in the bone, and the cutting blade is capable of cutting around the circumference of the bone as well as in a longitudinal direction along the bone. A powered bone breaking device for completing the breaking of the weakened bone is also disclosed. A miniaturized version of the bone cutting apparatus can be used to cut out sections of a femur head from inside a femur body.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: March 11, 2003
    Assignee: Volunteers for Medical Engineering
    Inventors: John H. Staehlin, David S. Hungerford, Dror Paley, Charles Bartish, John Garmon, Dana Mcpherson
  • Patent number: 6488686
    Abstract: The present invention includes an apparatus and method for cutting a bone including a cutting assembly having a cutting blade, a cutting guide for guiding the shape of the cut in the bone, and a power source for powering the cutting blade. The cutting blade is moveable radially to vary the depth of the cut in the bone, and the cutting blade is capable of cutting around the circumference of the bone as well as in a longitudinal direction along the bone. A powered bone breaking device for completing the breaking of the weakened bone is also disclosed. A miniaturized version of the bone cutting apparatus can be used to cut out sections of a femur head from inside a femur body.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: December 3, 2002
    Assignee: Volunteers for Medical Engineering
    Inventors: John H. Staehlin, David S. Hungerford
  • Publication number: 20020133235
    Abstract: Cells grown on a microcarrier are separated from the microcarrier by enzymatically digesting the microcarrier. More specifically, chondrocytes may be grown on dextran microcarrier beadlets and then the beadlets digested using dextranase to separate the chondrocytes from the carrier. Cells can also be grown on chitosan microcarriers to be used for implantation. In addition, cells can be grown on polysaccharide polymers to be used as implant devices. Various polymers serve as scaffolds for cells to be used for implantation. The polymers can be used for cell culture as well as for preparing scaffolds useful for tissue replacement such as cartilage tissue.
    Type: Application
    Filed: February 4, 2002
    Publication date: September 19, 2002
    Inventors: David S. Hungerford, Carmelita G. Frondoza, Afshin Sohrobi, Alan H. Shikani, Abraham J. Domb
  • Publication number: 20020123142
    Abstract: Cells grown on a microcarrier are separated from the microcarrier by enzymatically digesting the microcarrier. More specifically, chondrocytes may be grown on dextran microcarrier beadlets and then the beadlets digested using dextranase to separate the chondrocytes from the carrier. Cells can also be grown on chitosan microcarriers to be used for implantation. In addition, cells can be grown on polysaccharide polymers to be used as implant devices. Various polymers serve as scaffolds for cells to be used for implantation. The polymers can be used for cell culture as well as for preparing scaffolds useful for tissue replacement such as cartilage tissue.
    Type: Application
    Filed: January 3, 2002
    Publication date: September 5, 2002
    Inventors: David S. Hungerford, Carmelita G. Frondoza, Afshin Sohrabi, Alan H. Shikani, Abraham J. Domb
  • Patent number: 6378527
    Abstract: Cells grown on a microcarrier are separated from the microcarrier by enzymatically digesting the microcarrier. More specifically, chondrocytes may be grown on dextran microcarrier beadlets and then the beadlets digested using dextranase to separate the chondrocytes from the carrier. Cells can also be grown on chitosan microcarriers to be used for implantation. In addition, cells can be grown on polysaccharide polymers to be used as implant devices. Various polymers serve as scaffolds for cells to be used for implantation. The polymers can be used for cell culture as well as for preparing scaffolds useful for tissue replacement such as cartilage tissue.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: April 30, 2002
    Assignee: Chondros, Inc.
    Inventors: David S. Hungerford, Carmelita G. Frondoza, Afshin Sohrabi, Alan H. Shikani, Abraham J. Domb
  • Publication number: 20010051834
    Abstract: This invention is a method for the implantation of a combination of cells or cell-microcarrier aggregates wherein one component comprises a solid implantable construct and a second component comprises an injectable formulation. For example, in one embodiment, the solid implant may be first implanted to fill the majority of the cavity receiving the implant, and then cells or cell-microcarrier aggregates in an injectable format, with or without the addition of gelling materials to promote rapid gelling in situ, may be injected into spaces surrounding the solid implant in order to secure the solid implant in the site and/or to promote rapid adherence and/or integration of the solid implant to surrounding tissues. Also contemplated in this embodiment is that the cellular composition of the injectable component may differ from that of the solid component.
    Type: Application
    Filed: August 6, 2001
    Publication date: December 13, 2001
    Applicant: Chondros, Inc.
    Inventors: Carmelita G. Frondoza, David S. Hungerford, Alan H. Shikani, Abraham J. Domb, David J. Fink, Leonard Bloom
  • Patent number: 6309394
    Abstract: The present invention includes an apparatus and method for cutting a bone including a cutting assembly having a cutting blade, a cutting guide for guiding the shape of the cut in the bone, and a power source for powering the cutting blade. The cutting blade is moveable radially to vary the depth of the cut in the bone, and the cutting blade is capable of cutting around the circumference of the bone as well as in a longitudinal direction along the bone. A powered bone breaking device for completing the breaking of the weakened bone is also disclosed. A miniaturized version of the bone cutting apparatus can be used to cut out sections of a femur head from inside a femur body.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: October 30, 2001
    Assignee: Volunteers for Medical Engineering
    Inventors: John H. Staehlin, David S. Hungerford, Dror Paley, Charles Bartish, John Garmon, Dana Mcpherson
  • Publication number: 20010034525
    Abstract: The present invention includes an apparatus and method for cutting a bone including a cutting assembly having a cutting blade, a cutting guide for guiding the shape of the cut in the bone, and a power source for powering the cutting blade. The cutting blade is moveable radially to vary the depth of the cut in the bone, and the cutting blade is capable of cutting around the circumference of the bone as well as in a longitudinal direction along the bone. A powered bone breaking device for completing the breaking of the weakened bone is also disclosed. A miniaturized version of the bone cutting apparatus can be used to cut out sections of a femur head from inside a femur body.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 25, 2001
    Applicant: Volunteers for Medical Engineering
    Inventors: John H. Staehlin, David S. Hungerford, Dror Paley, Charles Bartish, John Garmon, Dana McPherson
  • Publication number: 20010034533
    Abstract: The present invention includes an apparatus and method for cutting a bone including a cutting assembly having a cutting blade, a cutting guide for guiding the shape of the cut in the bone, and a power source for powering the cutting blade. The cutting blade is moveable radially to vary the depth of the cut in the bone, and the cutting blade is capable of cutting around the circumference of the bone as well as in a longitudinal direction along the bone. A powered bone breaking device for completing the breaking of the weakened bone is also disclosed. A miniaturized version of the bone cutting apparatus can be used to cut out sections of a femur head from inside a femur body.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 25, 2001
    Applicant: Volunteers for Medical Engineering
    Inventors: John H. Staehlin, David S. Hungerford, Dror Paley, Charles Bartish, John Garmon, Dana McPherson
  • Publication number: 20010014475
    Abstract: Disclosed is a method of growing cells on biodegradable microcarrier particles and more specifically growing chondrocytes for an extended period of time until they aggregate. These aggregated cells can be injected directly or shaped for implantation into the body. In another embodiment of this invention, the cell microcarrier aggregates are grown in a mold that is shaped to conform to the geometry of the desired body part to be replaced. An apparatus for shaping the aggregated cells is disclosed. The aggregated cells can be supplied in a kit.
    Type: Application
    Filed: April 4, 2001
    Publication date: August 16, 2001
    Inventors: Carmelita G. Frondoza, David J. Fink, David S. Hungerford, Alan H. Shikani
  • Patent number: 5358534
    Abstract: A femoral component for a hip prosthesis has a distal portion defining a central longitudinal axis. The component has a generally conically shaped mid-shaft portion and a proximal portion with a shape based on the reamer and a shaped chisel used by the surgeon to prepare the proximal metaphysis and medullary canal. The proximal portion is shaped in a manner wherein a cross-section taken perpendicular to the central axis has a medial side formed as a first circular arc, a corner of the cross-section formed by the posterior and lateral sides as a second circular arc with a center on the central axis. The posterior side is arcuate and concave and tangent to the first and second circular arcs, with the anterior side being arcuate and convex.
    Type: Grant
    Filed: April 29, 1993
    Date of Patent: October 25, 1994
    Assignee: Howmedica Inc.
    Inventors: Michael W. Dudasik, Anthony K. Hedley, David S. Hungerford, Matthew P. Poggie
  • Patent number: 4653488
    Abstract: A prosthetic knee is implanted after cutting the femor and tibia in the proper manner with the aid of instruments which include axial alignment guides and a series of cutting jigs.
    Type: Grant
    Filed: November 19, 1985
    Date of Patent: March 31, 1987
    Assignee: Howmedica, Inc.
    Inventors: Robert V. Kenna, David S. Hungerford, Kenneth A. Krackow
  • Patent number: 4646729
    Abstract: A prosthetic knee is implanted after cutting the femor and tibia in the proper manner with the aid of instruments which include axial alignment guides and a series of cutting jigs.
    Type: Grant
    Filed: December 19, 1985
    Date of Patent: March 3, 1987
    Assignee: Howmedica, Inc.
    Inventors: Robert V. Kenna, David S. Hungerford, Kenneth A. Krackow