Patents by Inventor David S. Laitar

David S. Laitar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9139506
    Abstract: Hybrid polyester-polyether polyols are prepared by polymerizing an alkylene oxide in the presence of a carboxylate initiator. The polymerization is catalyzed with a mixture of double metal cyanide catalyst complex and certain magnesium, group 3-group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal (MG3-15LA) compound makes for consistently rapid activation of the double metal cyanide catalyst complex, even in the presence of carboxylate initiator compounds. This leads to greater productivity and reduced manufacturing costs due to shorter cycle times and less waste of raw materials due to the failure of the catalyst to become activated. Once the catalyst is activated, it often polymerizes the alkylene oxide at a faster rate that the DMC catalyst by itself.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 22, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Pavel L. Shutov, David S. Laitar, David A. Babb
  • Publication number: 20150225504
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Application
    Filed: April 23, 2015
    Publication date: August 13, 2015
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Patent number: 9056808
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of 1,2-dichloropropane, a by-product in the production of chlorohydrin, as a low cost starting material, alone or in combination with 1,2,3-trichloropropane. The present processes can also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, providing further time and cost savings. Finally, the processes are advantageously conducted in the liquid phase, thereby presenting additional savings as compared to conventional, gas phase processes.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: June 16, 2015
    Assignee: Dow Global Technologies, LLC
    Inventors: Max M. Tirtowidjojo, William J. Kruper, Jr., Barry B. Fish, David S. Laitar
  • Patent number: 9040657
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Grant
    Filed: December 18, 2011
    Date of Patent: May 26, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Patent number: 8907149
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of a feedstream comprising 1,2-dichloropropane, a by-product in the production of chlorohydrin, as a low cost starting material, alone or in combination with 1,2,3-trichloropropane. Selectivity of the process is enhanced over conventional processes employing successive chlorinations and/or dehydrochlorinations, by conducting at least one chlorination in the presence of an ionic chlorination catalyst. The present processes may also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, providing further time and cost savings.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: December 9, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Max M. Tirtowidjojo, William J. Kruper, Jr., Barry B. Fish, David S. Laitar
  • Patent number: 8907148
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of a feedstock comprising 1,2,3-trichloropropane and chlorinates the 1,1,2,3-tetrachloropropane generated by the process prior to a dehydrochlorination step. Production of the less desirable pentachloropropane isomer, 1,1,2,3,3-pentachloropropane, is thus minimized. The present processes provide better reaction yield as compared to conventional processes that require dehydrochlorination of 1,1,2,3-tetrachloropropane prior to chlorinating the same. The present process can also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, while limiting the production of waste water, thus providing further time and cost savings.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: December 9, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Max M. Tirtowidjojo, Barry B. Fish, David S. Laitar
  • Publication number: 20140357887
    Abstract: Hybrid polyester-polyether polyols are prepared by polymerizing an alkylene oxide in the presence of a carboxylate initiator. The polymerization is catalyzed with a mixture of double metal cyanide catalyst complex and certain magnesium, group 3-group 15 metal or lanthanide series metal compounds.
    Type: Application
    Filed: December 10, 2012
    Publication date: December 4, 2014
    Inventors: Pavel L. Shutov, David S. Laitar, David A. Babb
  • Publication number: 20140238868
    Abstract: Compositions suitable for the electrodeposition of copper on substrates, such as electronic device substrates, are provided. Methods of depositing copper layers on surfaces and filling apertures with copper are also provided.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Tina C. LI, Robert D. MIKKOLA, David S. LAITAR, Duane R. ROMER
  • Publication number: 20140179962
    Abstract: Processes for the production of chlorinated propenes are provided wherein a dehydrochlorination reaction occurs prior to a first chlorination reaction. The present processes make use of at least one reactor twice, i.e., at least two reactions occur in the same reactor. Cost and time savings are thus provided. Additional savings can be achieved by conducting more than two chlorination reactions, or all chlorination reactions, in one chlorination reactor, and/or by conducting more than two dehydrochlorination reactions, or all dehydrochlorination reactions, within a single dehydrochlorination reactor.
    Type: Application
    Filed: August 4, 2012
    Publication date: June 26, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Max M. Tirtowidjojo, Barry B. Fish, David S. Laitar
  • Publication number: 20140163266
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of a feedstock comprising 1,2,3-trichloropropane and chlorinates the 1,1,2,3-tetrachloropropane generated by the process prior to a dehydrochlorination step. Production of the less desirable pentachloropropane isomer, 1,1,2,3,3-pentachloropropane, is thus minimized. The present processes provide better reaction yield as compared to conventional processes that require dehydrochlorination of 1,1,2,3-tetrachloropropane prior to chlorinating the same. The present process can also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, while limiting the production of waste water, thus providing further time and cost savings.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 12, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Max M. Tirtowidjojo, Barry B. Fish, David S. Laitar
  • Publication number: 20140163265
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of a feedstock comprising 1,2,3-trichloropropane and chlorinates the 1,1,2,3-tetrachloropropane generated by the process prior to a dehydrochlorination step. Production of the less desirable pentachloropropane isomer, 1,1,2,3,3-pentachloropropane, is thus minimized. The present processes provide better reaction yield as compared to conventional processes that require dehydrochlorination of 1,1,2,3-tetrachloropropane prior to chlorinating the same. The present process can also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, while limiting the production of waste water, thus providing further time and cost savings.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 12, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Max M. Tirtowidjojo, Barry B. Fish, David S. Laitar
  • Publication number: 20140100394
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of a feedstream comprising 1,2-dichloropropane, a by-product in the production of chlorohydrin, as a low cost starting material, alone or in combination with 1,2,3-trichloropropane. Selectivity of the process is enhanced over conventional processes employing successive chlorinations and/or dehydrochlorinations, by conducting at least one chlorination in the presence of an ionic chlorination catalyst. The present processes may also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, providing further time and cost savings.
    Type: Application
    Filed: May 18, 2012
    Publication date: April 10, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES, LLC
    Inventors: Max M. Tirtowidjojo, William J. Kruper, JR., Barry B. Fish, David S. Laitar
  • Publication number: 20140081055
    Abstract: Processes for the production of chlorinated propenes are provided. The present processes make use of 1,2-dichloropropane, a by-product in the production of chlorohydrin, as a low cost starting material, alone or in combination with 1,2,3-trichloropropane. The present processes can also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, providing further time and cost savings. Finally, the processes are advantageously conducted in the liquid phase, thereby presenting additional savings as compared to conventional, gas phase processes.
    Type: Application
    Filed: May 18, 2012
    Publication date: March 20, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES, LLC
    Inventors: Max M. Tirtowidjojo, William J. Kruper, JR., Barry B. Fish, David S. Laitar
  • Publication number: 20130289236
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Application
    Filed: December 18, 2011
    Publication date: October 31, 2013
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy