Patents by Inventor David S. Lashmore

David S. Lashmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5897826
    Abstract: A powder feed system for delivering a quantity of particulate material to a die cavity of a powder press is provided. The powder press has a table-like platen surface which is flush with and surrounds a die in which the die cavity sits, an upper punch appending from an upper ram and a lower punch. The powder feed delivery system includes a receptacle for receiving and delivering particulate material to the cavity. The receptacle has an ingress through which particulate material is received under pressure and an egress for registering with the interior of the cavity and through which particulate material is delivered under pressure from a feed conduit to the cavity. The feed conduit is attached at a first end to the receptacle ingress. At least one pressure generator is attached to a top end of a pressure vessel attached at a second end to the feed conduit.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: April 27, 1999
    Assignee: Materials Innovation, Inc.
    Inventors: David S. Lashmore, Glenn L. Beane
  • Patent number: 5885496
    Abstract: A pressurized feed shoe for delivering particulate materials to fill a die cavity is provided. The feed shoe includes a feed shoe body comprising a vessel for receiving a quantity of particulate material. The feed shoe body has at least one bottom egress opening for registering with the die cavity and a top ingress opening for receiving particulate material. A pressure generator for generating supra-atmospheric pressures within the vessel and the die cavity is also provided. The pressure generator communicates with the vessel via a conduit sealingly engaged thereto. A shuttle selectively moves the feed shoe body to and from a position whereby the bottom egress opening registers with the die cavity.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: March 23, 1999
    Assignee: Materials Innovation, Inc.
    Inventors: Glenn L. Beane, David S. Lashmore
  • Patent number: 5885625
    Abstract: A pressurized feed shoe for delivering particulate materials to fill a die cavity is provided. The feed shoe includes a feed shoe body including a vessel for receiving a quantity of particulate material. The feed shoe body has at least one bottom egress opening for registering with the die cavity and a top ingress opening for receiving particulate material. A pressure generator for generating supra-atmospheric pressures within the vessel and the die cavity is also provided. The pressure generator communicates with the vessel via a conduit sealingly engaged thereto. A shuttle selectively moves the feed shoe body to and from a position whereby the bottom egress opening registers with the die cavity.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: March 23, 1999
    Assignee: Materials Innovation, Inc.
    Inventors: Glenn L. Beane, David S. Lashmore
  • Patent number: 5711866
    Abstract: A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 27, 1998
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, Menahem B. Ratzker, Anthony A. Giuseppetti, Frederick C. Eichmiller, Glenn L. Beane, David R. Kelley
  • Patent number: 5698081
    Abstract: An apparatus and method are provided for coating particles in a rotating container. A cathode forms an electrically conductive inner surface of a side wall of the container. An anode is positioned relative to the cathode so as to permit both the cathode and the anode to be immersed together in an electrically conductive fluid. A motor is connected to the container and arranged to cause the container to rotate so as to generate a centrifugal force. Particles are placed in the container, the container is filled with the electrically conductive fluid, and electrical current is caused to pass from the cathode to the anode through the electrically conductive fluid while the container is rotated. The particles rest against the electrically conductive inner surface of the side wall of the container while the electrical current passes from the cathode to the anode, so as to result in deposition of a coating material from the electrically conductive fluid onto the particles.
    Type: Grant
    Filed: December 7, 1995
    Date of Patent: December 16, 1997
    Assignee: Materials Innovation, Inc.
    Inventors: David S. Lashmore, Glenn L. Beane
  • Patent number: 5603815
    Abstract: A method for coating particulate substrate materials is provided which comprises (a) combining particles and an electrolyte in an imperforate container; (b) vibrating the container to generate a fluidized bed of particles in the electrolyte; and (c) electrochemically depositing a coating on the particles from reactants in the electrolyte. An apparatus for coating particles is also provided which comprises an imperforate container for receiving particles to be coated and an electrolyte and a device for generating a fluidized bed in the container, the device being operatively associated with the container.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: February 18, 1997
    Inventors: David S. Lashmore, Glenn L. Beane, David R. Kelley, Christian E. Johnson
  • Patent number: 5456819
    Abstract: This invention relates to an electrochemical treatment of metal substrates, including so-called "difficult to plate metals" such as tungsten and molybdenum, wherein deoxidation and plating are carried out in the same electrolyte bath by exploiting the electrochemical window in potential and pH of a reduction/deposition. This window may be illustrated using Pourbaix diagrams. In the first step of the treatment, a direct current at a reduction potential is applied to the substrate to reduce oxides present on the surface of the substrate without causing metal to be deposited from the electrolyte. In the second step, the reduction potential is changed to a more negative deposition potential, and a direct current at this deposition potential is applied for a time sufficient to deposit metal from the electrolyte.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: October 10, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, David Kelley
  • Patent number: 5318746
    Abstract: Oxide-free metallic, alloy or intermetallic compound formed by coating a powder of at least one member selected from the group consisting of elemental metallic, alloy and intermetallic compound with an oxide-replacing metal. The oxide-free compound may be compacted without the addition of a liquid sintering agent and at temperatures below the melting point of the compound, under sufficient pressure to form a uniform, consolidated intermetallic body.
    Type: Grant
    Filed: December 4, 1991
    Date of Patent: June 7, 1994
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, John A. Tesk, Moshe P. Dariel, Edward Escalante
  • Patent number: 5316650
    Abstract: In a process of electroforming a metal to produce a dental prosthesis, the improvement comprising employing as the metal a metallic glass alloy such as cobalt and phosphorus containing 8-30% by weight of phosphorus. The electrolytic bath comprises:15-300 g/L CoSo.sub.4.7H.sub.2 O40-80 g/L CoCl.sub.2.6H.sub.2 O25-35 g/L H.sub.3 BC.sub.330-100 g/L H.sub.3 PO.sub.31-2 ml/L wetting agentpH about 0.8-2.0.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: May 31, 1994
    Inventors: Menahem Ratzker, David S. Lashmore, John A. Tesk
  • Patent number: 5268235
    Abstract: A process for the production of a composition modulated alloy having a predetermined concentration is disclosed, in which alternating layers of at least two metals are successively deposited upon a substrate by electrodeposition, vacuum deposition, vapor deposition, or sputtering. The individual thicknesses of at least one metal's layers are varied in a predetermined manner. Pulsed galvanostatic electrodeposition using a tailored waveform is preferred. A copper-nickel concentration graded alloy is disclosed. Concentration graded alloys of predetermined concentration having at least one region of local homogeneity are also disclosed. The region of local homogeneity has a thickness corresponding to the thickness of two adjacent layers of different metals which have been diffusion annealed together. A pulsed electrodeposition/diffusion anneal process for production of such alloys is also disclosed.
    Type: Grant
    Filed: June 20, 1991
    Date of Patent: December 7, 1993
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, Moshe P. Dariel
  • Patent number: 5171419
    Abstract: The present invention disclosed metal-coated fibers and metal matrix composites made therefrom comprising metal-coated carbon or graphite fiber which have a layer of CoW or NiW alloy interposed between the fiber and its outer metal layer.
    Type: Grant
    Filed: January 18, 1990
    Date of Patent: December 15, 1992
    Assignee: American Cyanamid Company
    Inventors: Nea S. Wheeler, David S. Lashmore
  • Patent number: 5158653
    Abstract: A process for the production of a composition modulated alloy having a predetermined concentration is disclosed, in which alternating layers of at least two metals are successively deposited upon a substrate by electrodeposition, vacuum deposition, vapor deposition, or sputtering. The individual thicknesses of at least one metal's layers are varied in a predetermined manner. Pulsed galvanostatic electrodeposition using a tailored waveform is preferred. A copper-nickel concentration graded alloy is disclosed. Concentration graded alloys of predetermined concentration having at least one region of local homogeneity are also disclosed. The region of local homogeneity has a thickness corresponding to the thickness of two adjacent layers of different metals which have been diffusion annealed together. A pulsed electrodeposition/diffusion anneal process for production of such alloys is also disclosed.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: October 27, 1992
    Inventors: David S. Lashmore, Moshe P. Dariel
  • Patent number: 4804446
    Abstract: An electrodeposition process and a bath therefore are disclosed for performing the electrodeposition of hard smooth coatings of trivalent chromium. The electrodeposition process is accomplished energy efficiently. The bath includes chromium chloride as a source of chromium, citric acid to complex the chromium, and a wetting agent which is preferably Triton x-100. Preferably, bromide is also provided in the solution to maintain the hexavalent chromium production at the anode at a low level. Ammonium chloride is also preferably provided to improve the conductivity and also the current distribution in the bath. Boric acid is provided to advance the reaction kinetics. The pH of the bath is maintained at approximately 4.0 and the temperature is maintained at approximately 35.degree. C. Either a direct current or pulsed current is used for the deposition process. Hard smooth coatings of trivalent chromium are deposited through use of the process and the bath of the claimed invention.
    Type: Grant
    Filed: September 19, 1986
    Date of Patent: February 14, 1989
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, Ilan Weisshaus, Eok NamGoong
  • Patent number: 4699000
    Abstract: A device and method are described for measuring and evaluating mechanical properties such as microhardness of a material. The present invention conveniently incorporates commercially available hardness testing equipment but modifies it to permit continuous evaluation and measurement of the displacement of the stylus used to indent the sample being tested. By simultaneously monitoring displacement, load applied to the stylus and time values relating to the mechanical properties of the material such as wear, fatigue and tensile strength are obtained.
    Type: Grant
    Filed: April 17, 1986
    Date of Patent: October 13, 1987
    Assignee: Micro Properties Inc.
    Inventors: David S. Lashmore, Jasper L. Mullen, Christian E. Johnson, Robert S. Polvani
  • Patent number: 4461680
    Abstract: A process for the electrodeposition of a nickel chromium alloy on a catho substrate comprises:contacting the substrate with an aqueous electrolyte containing: about 50-125 g/l of CrCl.sub.3.6H.sub.2 O; about 10-125 g/l of NiCl.sub.2.6H.sub.2 O; about 10-115 g/l of formic acid; about 25-50 g/l of boric acid; and about 50-100 g/l of sodium citrate dihydrate;adjusting the pH of the bath to about 1-5 and the temperature to about 20.degree.-60.degree. C.; andpassing a sufficient current through the solution and to the substrate to effect deposition thereon of a nickel-chromium alloy.
    Type: Grant
    Filed: December 30, 1983
    Date of Patent: July 24, 1984
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventor: David S. Lashmore