Patents by Inventor David S. Mintz

David S. Mintz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230012778
    Abstract: Methods and apparatuses provide improved navigation through tubular networks such as lung airways by providing improved estimation of location and orientation information of a medical instrument (e.g., an endoscope) within the tubular network. Various input data such as image data, EM data, and robot data are used by different algorithms to estimate the state of the medical instrument, and the state information is used to locate a specific site within a tubular network and/or to determine navigation information for what positions/orientations the medical instrument should travel through to arrive at the specific site. Probability distributions together with confidence values are generated corresponding to different algorithms are used to determine the medical instrument's estimated state.
    Type: Application
    Filed: July 27, 2022
    Publication date: January 19, 2023
    Applicant: Auris Health, Inc.
    Inventors: David S. Mintz, Atiyeh Ghoreyshi, Prasanth Jeevan, Yiliang Xu, Gehua Yang, Matthew Joseph Leotta, Charles V. Stewart
  • Patent number: 11534250
    Abstract: Systems and methods for moving or manipulating robotic arms are provided. A group of robotic arms are configured to form a virtual rail or line between the end effectors of the robotic arms. The robotic arms are responsive to outside force such as from a user. When a user moves a single one of the robotic arms, the other robotic arms will automatically move to maintain the virtual rail alignments. The virtual rail of the robotic arm end effectors may be translated in one or more of three dimensions. The virtual rail may be rotated about a point on the virtual rail line. The robotic arms can detect the nature of the contact from the user and move accordingly. Holding, shaking, tapping, pushing, pulling, and rotating different parts of the robotic arm elicits different movement responses from different parts of the robotic arm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: December 27, 2022
    Assignee: Auris Health, Inc.
    Inventors: Enrique Romo, Frederic H. Moll, David S. Mintz, Mark Lown, Siddharth Oli, Allen Jiang
  • Patent number: 11534249
    Abstract: A method is described for performing a percutaneous operation on a patient to remove an object from a cavity within the patient. The method includes advancing a first alignment sensor into the cavity through a patient lumen. The first alignment sensor provides its position and orientation in free space in real time. The alignment sensor is manipulated until it is located in proximity to the object. A percutaneous opening is made in the patient with a surgical tool, where the surgical tool includes a second alignment sensor that provides the position and orientation of the surgical tool in free space in real time. The surgical tool is directed towards the object using data provided by both the first and the second alignment sensors.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: December 27, 2022
    Assignee: Auris Health, Inc.
    Inventors: Enrique Romo, David M. Schummers, David S. Mintz
  • Patent number: 11517379
    Abstract: A surgical instrument comprises a housing and a valve mounted in the housing. The valve is configured to control a flow of a fluid into or out of a surgical site in response to either a robotic actuation of the valve or a manual actuation of the valve. The valve comprises a valve shaft, a receiving member structurally coupled to the valve shaft, and a manual actuation component structurally coupled to the valve shaft and extending from the housing. The receiving member is configured to releasably couple to a driver of a robotic manipulator to receive the robotic actuation from the driver remotely controlled by a surgeon to adjust a state of the valve. The manual actuation component is configured to receive the manual actuation to adjust the state of the valve.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: December 6, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul A. Millman, David W. Bailey, Dean F. Hoornaert, David Q. Larkin, David S. Mintz
  • Publication number: 20220331015
    Abstract: Floating electromagnetic field generator systems and methods are provided. The system comprises a surgical bed portion. The system also comprises a brace component disposed within the surgical bed portion. Additionally, the system comprises a first arm that is attached to the brace component. The first arm is positioned adjacent to the surgical bed portion. Additionally, the first arm has at least one field generator coil embedded therein. The system also comprises a second arm that is attached to the brace component. The second arm is positioned adjacent to the surgical bed portion. Additionally, the second arm has at least one field generator coil embedded therein. The second arm is positioned parallel to the first arm.
    Type: Application
    Filed: May 6, 2022
    Publication date: October 20, 2022
    Inventors: Jason Lee, Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Publication number: 20220330808
    Abstract: An object sizing system sizes an object positioned within a patient. The object sizing system identifies a presence of the object. The object sizing system navigates an elongate body of an instrument to a position proximal to the object within the patient. An imaging sensor coupled to the elongate body captures one or more sequential images of the object. The instrument may be further moved around within the patient to capture additional images at different positions/orientations relative to the object. The object sizing system also acquires robot data and/or EM data associated with the positions and orientations of the elongate body. The object sizing system analyzes the captured images based on the acquired robot data to estimate a size of the object.
    Type: Application
    Filed: May 2, 2022
    Publication date: October 20, 2022
    Inventors: David S. Mintz, David M. Schummers, Prasanth Jeevan, Hedyeh Rafii-Tari, Ritwik Ummalaneni
  • Publication number: 20220241034
    Abstract: Medical and/or robotic devices, systems and methods can provide an indicator associated with each manipulator assembly of a multi-arm telerobotic or telesurgical system. The exemplary indicator comprises a multi-color light emitting diode (LED) mounted to a manipulator moving an associated surgical instrument, allowing the indicator to display any of a wide variety of signals. The invention may provide an additional user interface to facilitate communications between the telesurgical system and/or members of a telesurgical team.
    Type: Application
    Filed: March 18, 2022
    Publication date: August 4, 2022
    Inventors: David S. Mintz, Tracey Ann Morely, Theordore C. Walker, David Q. Larkin, Michael L. Hanuschik
  • Patent number: 11403759
    Abstract: Methods and apparatuses provide improved navigation through tubular networks such as lung airways by providing improved estimation of location and orientation information of a medical instrument (e.g., an endoscope) within the tubular network. Various input data such as image data, EM data, and robot data are used by different algorithms to estimate the state of the medical instrument, and the state information is used to locate a specific site within a tubular network and/or to determine navigation information for what positions/orientations the medical instrument should travel through to arrive at the specific site. Probability distributions together with confidence values are generated corresponding to different algorithms are used to determine the medical instrument's estimated state.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: August 2, 2022
    Assignee: Auris Health, Inc.
    Inventors: David S. Mintz, Atiyeh Ghoreyshi, Prasanth Jeevan, Yiliang Xu, Gehua Yang, Matthew Joseph Leotta, Charles V. Stewart
  • Patent number: 11337765
    Abstract: Medical and/or robotic devices, systems and methods can provide an indicator associated with each manipulator assembly of a multi-arm telerobotic or telesurgical system. The exemplary indicator comprises a multi-color light emitting diode (LED) mounted to a manipulator moving an associated surgical instrument, allowing the indicator to display any of a wide variety of signals. The invention may provide an additional user interface to facilitate communications between the telesurgical system and/or members of a telesurgical team.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 24, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David S. Mintz, Tracey Ann Morley, Theodore C. Walker, David Q. Larkin, Michael L. Hanuschik
  • Patent number: 11337602
    Abstract: An object sizing system sizes an object positioned within a patient. The object sizing system identifies a presence of the object. The object sizing system navigates an elongate body of an instrument to a position proximal to the object within the patient. An imaging sensor coupled to the elongate body captures one or more sequential images of the object. The instrument may be further moved around within the patient to capture additional images at different positions/orientations relative to the object. The object sizing system also acquires robot data and/or EM data associated with the positions and orientations of the elongate body. The object sizing system analyzes the captured images based on the acquired robot data to estimate a size of the object.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: May 24, 2022
    Inventors: David S. Mintz, David M. Schummers, Prasanth Jeevan, Hedyeh Rafii-Tari, Ritwik Ummalaneni
  • Patent number: 11324554
    Abstract: Floating electromagnetic field generator systems and methods are provided. The system comprises a surgical bed portion. The system also comprises a brace component disposed within the surgical bed portion. Additionally, the system comprises a first arm that is attached to the brace component. The first arm is positioned adjacent to the surgical bed portion. Additionally, the first arm has at least one field generator coil embedded therein. The system also comprises a second arm that is attached to the brace component. The second arm is positioned adjacent to the surgical bed portion. Additionally, the second arm has at least one field generator coil embedded therein. The second arm is positioned parallel to the first arm.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 10, 2022
    Assignee: Auris Health, Inc.
    Inventors: Jason Lee, Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Patent number: 11304764
    Abstract: Medical and/or robotic devices, systems and methods can provide an indicator associated with each manipulator assembly of a multi-arm telerobotic or telesurgical system. The exemplary indicator comprises a multi-color light emitting diode (LED) mounted to a manipulator moving an associated surgical instrument, allowing the indicator to display any of a wide variety of signals. The invention may provide an additional user interface to facilitate communications between the telesurgical system and/or members of a telesurgical team.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 19, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David S. Mintz, Tracey Ann Morley, Theodore C. Walker, David Q. Larkin, Michael L. Hanuschik
  • Publication number: 20220022735
    Abstract: A surgical robotic system includes an endoscope, a robotic arm including a drive mechanism, the drive mechanism coupled to the endoscope. The surgical robotic system further includes a controller configured to receive a command to move the endoscope using the robotic arm, access a set of calibration parameters associated with the endoscope, generate an adjusted command based on the command and the set of calibration parameters, and provide the adjusted command to the robotic arm to move the endoscope.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventors: Varun AGRAWAL, Atiyeh GHOREYSHI, David S. MINTZ
  • Publication number: 20210369082
    Abstract: A system comprises an instrument having a bendable portion with first and control elements extending in the bendable portion and a control system operably coupled to an actuator and a sensor. The control system operates to, while the bendable portion is in a neutral position, command the actuator to move the first control element a first amount until slack is removed from the first control element and command the actuator to move the second control element a second amount until slack is removed from the second control element. The control system also receives a first control element calibration position after moving the first control element the first amount and receives a second control element calibration position after moving the second control element the second amount. The control system also commands the actuator to bend the bendable portion from the neutral position and determine a resulting shape of the bendable portion.
    Type: Application
    Filed: July 30, 2021
    Publication date: December 2, 2021
    Inventors: Kevin Durant, David S. Mintz, Robert M. Ohline
  • Patent number: 11141048
    Abstract: A surgical robotic system automatically calibrates tubular and flexible surgical tools such as endoscopes. By accounting for nonlinear behavior of an endoscope, the surgical robotic system can accurately model motions of the endoscope and navigate the endoscope while performing a surgical procedure on a patient. The surgical robotic system models the nonlinearities using sets of calibration parameters determined based on images captured by an image sensor of the endoscope. Calibration parameters can describe translational or rotational movements of the endoscope in one or more axis, e.g., pitch and yaw, as well as a slope, hysteresis, or dead zone value corresponding to the endoscope's motion. The endoscope can include tubular components referred to as a sheath and leader. An instrument device manipulator of the surgical robotic system actuates pull wires coupled to the sheath or the leader, which causes the endoscope to articulate.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 12, 2021
    Assignee: Auris Health, Inc.
    Inventors: Varun Agrawal, Atiyeh Ghoreyshi, David S. Mintz
  • Publication number: 20210259798
    Abstract: Tissue expanders and their methods of use.
    Type: Application
    Filed: October 6, 2020
    Publication date: August 26, 2021
    Inventors: Christopher S. JONES, Daniel JACOBS, F. Mark PAYNE, David S. MINTZ, Craig A. PURDY, Ryan S. HAN, Tadmor SHALON
  • Patent number: 11096563
    Abstract: A method for determining a shape of a bendable instrument can include placing the bendable instrument in a neutral position; moving a first control element a first amount until slack is removed from the first control element; moving a second control element a second amount until slack is removed from the second control element; sensing a position of the first control element after moving the first control element the first amount, the sensed position of the first control element being defined as a first control element calibration position; sensing a position of the second control element after moving the second control element the second amount, the sensed position of the second control element being defined as a second control element calibration position.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 24, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Kevin Durant, David S. Mintz, Robert M. Ohline
  • Patent number: 11037464
    Abstract: The systems and methods disclosed herein are directed to robotically controlling a medical device to utilize manual skills and techniques developed by surgeons. The system may comprise an emulator representing a medical device. The system may comprise at least one detector configured to track the emulator. The system may further comprise an imaging device configured to track the medical device. The system may be configured to move the medical device to reduce an alignment offset between the location of the emulator and the location of the medical device, to move the imaging device based on the translational movement of the emulator, and/or to move the medical device based on data indicative of an orientation of the emulator.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: June 15, 2021
    Assignee: Auris Health, Inc.
    Inventors: Michael Shyh-Yen Ho, David S. Mintz, Edward Joseph Menard, Mark A. Lown, Jason Tomas Wilson, Yanan Huang
  • Publication number: 20210153954
    Abstract: An electromagnetic (EM) system for tracking a surgical tool is provided. The system may comprise a plurality of subsets of field generator coils disposed along edge portions of a surgical bed. Each subset of field generator coils may be configured to generate a magnetic field within a control volume. The system may further comprise a position sensor disposed on a portion of the surgical tool. The position sensor may be configured to generate a sensor signal in response to the magnetic field when the position sensor is located inside the control volume. Additionally, the system may comprise an EM system controller configured to selectively activate one or more of the subsets of field generator coils based on the sensor signal.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 27, 2021
    Inventors: Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Publication number: 20210077210
    Abstract: A teleoperated system includes a master grip and a ratcheting system coupled to the master grip. The ratcheting system is configured to align the master grip with a slave instrument commanded by the master grip by determining grip rotation values describing an orientation of the master grip, determining instrument rotation values describing an orientation of the instrument, determining an orientation error between an orientation of the master grip and the orientation of the instrument based on the grip rotation values and the instrument rotation values, and reducing the orientation error by low pass filtering the grip rotation values or the instrument rotation values.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Brandon D. ITKOWITZ, Simon P. DIMAIO, William C. NOWLIN, Gunter D. NIEMEYER, David S. MINTZ