Patents by Inventor David S. Sebba

David S. Sebba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230139868
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 11583553
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 21, 2023
    Assignees: NANOCOMPOSIX, LLC, CORONADO AESTHETICS, LLC
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20220074831
    Abstract: Methods and apparatus provide filtration for concentrating analytes, such as bacteria or exosomes, of a biological sample, such as blood or urine. The technology may employ membrane devices that implement one or more tangential flow filtration processes such as in stages. An example membrane device may typically include a membrane having sides and ends. The membrane may selectively permit constituent(s) of the sample to pass through while retaining other constituents at one side. An input chamber of the device may include an inlet near one end and an outlet near the other end, and that may permit a tangential flow of the sample along the first side surface, and a trans-membrane passing of constituent(s). An output chamber of the device may be configured at the second side surface to receive the passing constituents. Such devices may be provided in a kit to facilitate targeting of a desired biological analyte concentration.
    Type: Application
    Filed: January 23, 2020
    Publication date: March 10, 2022
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Qihua Xu, Kristin Weidemaier, Jon E. Salomon, Alexander G. Lastovich, Eric A. Fallows, Sean Connell, Joshua Herr, Meghan Wolfgang, Michael A. Brasch, Richard L. Moore, David S. Sebba, Cristian Clavijo, Shirley Ng, Richard Abbott, Alexander Adam Papp, Henry Li-Wei Fu, Caitlin Marie Austin, Sean Patrick Dowling, Owen Lewis Joyce, Michael L. Kiplinger, William Kevin Carpenter
  • Publication number: 20200306294
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 10688126
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: June 23, 2020
    Assignees: nanoComposix, Inc., Sebacia, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20180136204
    Abstract: Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 17, 2018
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Kristin Weidemaier, Robert L. Campbell, Erin Gooch Carruthers, Adam Craig Curry, Kevin G. Dolan, Andrea Liebmann-Vinson, Wendy Dale Woodley, Melody M.H. Kuroda, Ammon David Lentz, Dwight Livingston, Michael Justin Lizzi, Artis R. Lockhart, Ernie Ritchey, Eric A. Fallows, Donald E. Gorelick, Jack Kessler, Spencer Lovette, Jeffrey S. Ojala, Mark A. Talmer, Miroslaw Bartkowiak, Scott N. Danhof, Gregory S. Kramer, Thomas D. Haubert, Michael L. Marshall, James A. Prescott, Randy J. Somerville, M. Scott Ulrich, David S. Sebba
  • Patent number: 9874555
    Abstract: Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 23, 2018
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Kristin Weidemaier, Robert L. Campbell, Erin Gooch Carruthers, Adam C. Curry, Kevin G. Dolan, Andrea Liebmann-Vinson, Wendy Dale Woodley, Melody M. H. Kuroda, Eric A. Fallows, Miroslaw Bartkowiak, Scott N. Danhof, Gregory S. Kramer, Thomas D. Haubert, Michael L. Marshall, James A. Prescott, Randy J. Somerville, M. Scott Ulrich, David S. Sebba
  • Publication number: 20170087183
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 30, 2017
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 9526745
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 27, 2016
    Assignees: nanoComposix, Inc., Sienna Biopharmaceuticals, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20160101130
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoplates, such as silver nanoplates or silver platelet nanoparticles, and to nanoparticles, solutions and substrates prepared by said methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 14, 2016
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba
  • Publication number: 20160075851
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Patent number: 9249334
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoplates, such as silver nanoplates or silver platelet nanoparticles, and to nanoparticles, solutions and substrates prepared by said methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: February 2, 2016
    Assignee: nanoComposix, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba
  • Patent number: 9212294
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: December 15, 2015
    Assignees: nanoComposix, Inc., Sienna Labs, Inc.
    Inventors: Steven J. Oldenburg, Martin Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20150225599
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: April 8, 2015
    Publication date: August 13, 2015
    Inventors: Steven J. Oldenburg, Martin G. Miranda, David S. Sebba, Todd J. Harris
  • Publication number: 20150118688
    Abstract: Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 30, 2015
    Inventors: Kristin Weidemaier, Robert L. Campbell, Erin Gooch Carruthers, Adam C. Curry, Kevin G. Dolan, Andrea Liebmann-Vinson, Wendy Dale Woodley, Melody M.H. Kuroda, Ammon David Lentz, Dwight Livingston, Michael Justin Lizzi, Artis R. Lockhart, Ernie Ritchey, Eric A. Fallows, Donald E. Gorelick, Jack Kessler, Spencer Lovette, Jeffrey S. Ojala, Mark A. Talmer, Miroslaw Bartkowiak, Scott N. Danhof, Gregory S. Kramer, Thomas D. Haubert, Michael L. Marshall, James A. Prescott, Randy J. Somerville, M. Scott Ulrich, David S. Sebba
  • Publication number: 20140105982
    Abstract: Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoplates, such as silver nanoplates or silver platelet nanoparticles, and to nanoparticles, solutions and substrates prepared by said methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 17, 2014
    Applicant: nanoComposix, Inc.
    Inventors: Steven J. Oldenburg, Martin G. Miranda, David S. Sebba