Patents by Inventor David Schell

David Schell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10302529
    Abstract: An integrating sphere-equipped optical measurement device and optical connector polarity and type identification and loss measurement are provided. The optical measurement device includes at least two photodetectors that are optically responsive over different ranges of wavelengths. The optical measurement device receives one or more optical signals emanate from optical fibers of an optical fiber cable. The optical measurement device determines an optical intensity or loss of the one or more optical signals based on a measurement made by a corresponding photodetector whose responsivity range includes a wavelength of the one or more optical signals. The optical measurement device determines one or more respective positions where the one or more optical signals impinged on a sensor. The optical measurement device determines a polarity of the optical fiber cable based on both the one or more positions and one or more or transmitting positions of the one or more optical signals, respectively.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 28, 2019
    Assignee: Fluke Corporation
    Inventors: J. David Schell, Seymour Goldstein, Piotr Anatolij Levin
  • Publication number: 20190050310
    Abstract: A testing device which includes a testing unit to perform test procedures on network elements of a communication network and a machine-readable code reader to read a machine-readable code associated with a network element of the communication network. The testing device further includes a computer device configured to: (i) determine a component type associated with the machine-readable code data read; (ii) select from a plurality of configuration files a configuration file based on the component type determined; and (iii) configure the test unit for a test procedure using the configuration file selected, and to perform the test procedure on the network element.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Clinton J. Wooton, John Paul Hittel, J. David Schell
  • Patent number: 10161829
    Abstract: A system for certifying physical parameters of fiber optic cabling may include a test device coupled to an end of a fiber optic cable. The test device injects light into the fiber optic cable and conducts a certification test of physical parameters of the fiber optic cable. Based on observation of interaction of the injected light with the fiber optic cable, the test device tests one or more physical parameters of the cable and certifies whether the tested parameters satisfy corresponding parameters specified by a predetermined standard. A separate device may communicate a control signal (e.g., wirelessly) to the test device for controlling an operation of the certification test. The separate device is further operable to receive a result of the certification test from the test device. The separate device may further communicate with a remote computing device updates a database element with information regarding the certification test.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: December 25, 2018
    Assignee: Fluke Corporation
    Inventors: Theodore J. Brillhart, J. David Schell
  • Publication number: 20180340861
    Abstract: An optical testing device is provided. The testing device includes a position sensing detector (PSD) having an optical sensing area that is optically responsive to a first range of wavelengths. The PSD receives a plurality of optical signals having wavelengths within the first range and emitted through a respective plurality of optical fibers and detects a plurality of positions where the optical signals impinged on the optical sensing area for determining array polarity. The PSD receives a plurality of first optical signals having wavelengths within the first range and detects the polarity and a plurality of optical intensities of the first optical signals. The testing device includes a photodetector that is optically responsive to a second range of wavelengths different than the first range. The photodetector receives a plurality of second optical signals within the second range and detects a plurality of optical intensities of the second optical signals.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: J. David Schell, Seymour Goldstein, Harlan L. Kassler, Jackson L. Salling
  • Patent number: 10139274
    Abstract: An optical measurement device and loss measurement is provided. The optical measurement device receives one or more optical signals that respectively emanate from one or more optical fibers of a plurality of optical fibers of an optical fiber cable. The optical measurement device captures one or more images of the one or more optical signals and determines, based on the one or more images, one or more receiving positions of the one or more optical signals, respectively.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: November 27, 2018
    Assignee: Fluke Corporation
    Inventors: J. David Schell, Seymour Goldstein
  • Patent number: 10114717
    Abstract: A testing device which includes a testing unit to perform test procedures on network elements of a communication network and a machine-readable code reader to read a machine-readable code associated with a network element of the communication network. The testing device further includes a computer device configured to: (i) determine a component type associated with the machine-readable code data read; (ii) select from a plurality of configuration files a configuration file based on the component type determined; and (iii) configure the test unit for a test procedure using the configuration file selected, and to perform the test procedure on the network element.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 30, 2018
    Assignee: Fluke Corporation
    Inventors: Clinton J. Wooton, John Paul Hittel, J. David Schell
  • Patent number: 10097429
    Abstract: A system and method for aggregation of test result data includes a plurality of first testing devices configured to perform testing procedures to test cables of at least one communication network and to output associated first test result data. A cloud-based server device is coupled via a network to the plurality of first testing devices. The server device includes a database configured to store the first test result data and a processor. The processor is configured to determine a statistic associated with an aggregation of the first test result data output by the plurality of first testing devices. Second test result data is then received by the processor from a second testing device so as to be compared to the determined statistic and to output an indication of a result of the comparison.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: October 9, 2018
    Assignee: Fluke Corporation
    Inventors: David E. Bezold, J. David Schell, Steve O'Hara
  • Publication number: 20180283937
    Abstract: An optical measurement device and loss measurement is provided. The optical measurement device receives one or more optical signals that respectively emanate from one or more optical fibers of a plurality of optical fibers of an optical fiber cable. The optical measurement device captures one or more images of the one or more optical signals and determines, based on the one or more images, one or more receiving positions of the one or more optical signals, respectively.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Inventors: J. David SCHELL, Seymour GOLDSTEIN
  • Publication number: 20180283986
    Abstract: One or more embodiments are directed to optical test instruments, such as fiber optic inspection scopes and optical power meters, for testing optical communication links, such as fiber optic connectors. The optical test instruments include a single test port that is able to operate in two modes of operation. In a first mode of operation, the optical test instrument is configured to provide an image of the endface of a fiber optic connector under test. In a second mode of operation, the optical test instrument is configured to measure power or power loss in an optical fiber under test. In that regard, the fiber optic connector only has to be coupled to a single port of an optical test instrument for a visual inspection of an endface of a fiber optic connector and a power test of the optical fiber under test.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 4, 2018
    Inventors: J. David Schell, Richard G. Tyler
  • Patent number: 10090914
    Abstract: One or more embodiments are directed to apparatuses and methods of evaluating an endface of an optical communication link, such as a fiber optic cable. In at least one embodiment, a camera probe includes an imaging device that includes one or more feedback mechanisms, such as an alignment feedback mechanism that communicates alignment information regarding an alignment of the optical communication link under test with an image sensor of the camera probe. The alignment feedback mechanism may be visual and/or aural. The alignment feedback mechanism may provide directional information to the user indicative of a direction to move the imaging device relative to the optical communication link. In addition or alternatively, the feedback mechanism may include a focus feedback mechanism that communicates focus information regarding a focus of the endface in an obtained image of the endface.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 2, 2018
    Assignee: Fluke Corporation
    Inventors: J. David Schell, Christian Schillab
  • Publication number: 20180266918
    Abstract: An integrating sphere-equipped optical measurement device and optical connector polarity and type identification and loss measurement are provided. The optical measurement device includes at least two photodetectors that are optically responsive over different ranges of wavelengths. The optical measurement device receives one or more optical signals emanate from optical fibers of an optical fiber cable. The optical measurement device determines an optical intensity or loss of the one or more optical signals based on a measurement made by a corresponding photodetector whose responsivity range includes a wavelength of the one or more optical signals. The optical measurement device determines one or more respective positions where the one or more optical signals impinged on a sensor. The optical measurement device determines a polarity of the optical fiber cable based on both the one or more positions and one or more or transmitting positions of the one or more optical signals, respectively.
    Type: Application
    Filed: January 8, 2018
    Publication date: September 20, 2018
    Inventors: J. David Schell, Seymour Goldstein, Piotr Anatolij Levin
  • Publication number: 20180269967
    Abstract: An integrating sphere-equipped optical measurement device and optical connector polarity and type identification and loss measurement are provided. The optical measurement device receives one or more optical signals that respectively emanate from one or more optical fibers of a plurality of optical fibers of an optical fiber cable. The optical measurement device determines one or more respective positions where the one or more optical signals impinged on a sensor. The optical measurement device determines based on the one or more positions, one or more receiving positions of the one or more optical signals, respectively. The optical measurement device determines a polarity of the optical fiber cable based on both the one or more receiving positions and one or more or transmitting positions of the one or more optical signals, respectively.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 20, 2018
    Inventors: J. David Schell, Seymour Goldstein, Piotr Anatolij Levin
  • Patent number: 10015568
    Abstract: An optically-addressable optical switch is disclosed. The optically-addressable optical switch receives, using an optical input, a first optical signal or portion of an optical signal and determines, based on the received optical signal, an address of an optical connector. The address is one of a plurality of addresses respectively corresponding to a plurality of optical connections of the optical switch. The optical switch subsequently receives a second optical signal or portion of an optical signal, using the same optical input, and outputs the second optical signal or portion of the optical signal to the optical connection corresponding to the determined address.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: July 3, 2018
    Assignee: Fluke Corporation
    Inventor: J. David Schell
  • Publication number: 20180167297
    Abstract: A test instrument provides suggested next operational step function to provide a user with assistance during testing. A display is provided to show the amount of a project that has been completed, for example as a percentage completed value. Individual test results may be saved to a ‘fix later’ list, which may be later accessed to re-test items that may not have passed on initial testing.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 14, 2018
    Inventors: Sena E. R. Janky, Glenn Keltto, Steve O' Hara, J. David Schell, Elizabeth Bacon, Karen Jones
  • Patent number: 9995649
    Abstract: One or more embodiments are directed to optical test instruments, such as fiber optic inspection scopes and optical power meters, for testing optical communication links, such as fiber optic connectors. The optical test instruments include a single test port that is able to operate in two modes of operation. In a first mode of operation, the optical test instrument is configured to provide an image of the endface of a fiber optic connector under test. In a second mode of operation, the optical test instrument is configured to measure power or power loss in an optical fiber under test. In that regard, the fiber optic connector only has to be coupled to a single port of an optical test instrument for a visual inspection of an endface of a fiber optic connector and a power test of the optical fiber under test.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: June 12, 2018
    Assignee: FLUKE CORPORATION
    Inventors: J. David Schell, Richard G. Tyler
  • Publication number: 20180103303
    Abstract: An optically-addressable optical switch is disclosed. The optically-addressable optical switch receives, using an optical input, a first optical signal or portion of an optical signal and determines, based on the received optical signal, an address of an optical connector. The address is one of a plurality of addresses respectively corresponding to a plurality of optical connections of the optical switch. The optical switch subsequently receives a second optical signal or portion of an optical signal, using the same optical input, and outputs the second optical signal or portion of the optical signal to the optical connection corresponding to the determined address.
    Type: Application
    Filed: October 11, 2016
    Publication date: April 12, 2018
    Inventor: J. David SCHELL
  • Patent number: 9847921
    Abstract: A test instrument provides suggested next operational step function to provide a user with assistance during testing. A display is provided to show the amount of a project that has been completed, for example as a percentage completed value. Individual test results may be saved to a “fix later” list, which may be later accessed to re-test items that may not have passed on initial testing.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: December 19, 2017
    Assignee: Fluke Corporation
    Inventors: Sena E. Janky, Glenn Keltto, Steve O'Hara, J. David Schell, Elizabeth Bacon, Karen Jones
  • Publication number: 20170322111
    Abstract: One or more embodiments are directed to optical test instruments, such as fiber optic inspection scopes and optical power meters, for testing optical communication links, such as fiber optic connectors. The optical test instruments include a single test port that is able to operate in two modes of operation. In a first mode of operation, the optical test instrument is configured to provide an image of the endface of a fiber optic connector under test. In a second mode of operation, the optical test instrument is configured to measure power or power loss in an optical fiber under test. In that regard, the fiber optic connector only has to be coupled to a single port of an optical test instrument for a visual inspection of an endface of a fiber optic connector and a power test of the optical fiber under test.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 9, 2017
    Inventors: J. David Schell, Richard G. Tyler
  • Publication number: 20170149634
    Abstract: A system and method for aggregation of test result data includes a plurality of first testing devices configured to perform testing procedures to test cables of at least one communication network and to output associated first test result data. A cloud-based server device is coupled via a network to the plurality of first testing devices. The server device includes a database configured to store the first test result data and a processor. The processor is configured to determine a statistic associated with an aggregation of the first test result data output by the plurality of first testing devices. Second test result data is then received by the processor from a second testing device so as to be compared to the determined statistic and to output an indication of a result of the comparison.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Applicant: Fluke Corporation
    Inventors: David E. Bezold, J. David Schell, Steve O' Hara
  • Publication number: 20170116102
    Abstract: A testing device which includes a testing unit to perform test procedures on network elements of a communication network and a machine-readable code reader to read a machine-readable code associated with a network element of the communication network. The testing device further includes a computer device configured to: (i) determine a component type associated with the machine-readable code data read; (ii) select from a plurality of configuration files a configuration file based on the component type determined; and (iii) configure the test unit for a test procedure using the configuration file selected, and to perform the test procedure on the network element.
    Type: Application
    Filed: October 27, 2015
    Publication date: April 27, 2017
    Applicant: FLUKE CORPORATION
    Inventors: Clinton J. Wooton, John Paul Hittel, J. David Schell