Patents by Inventor David Scott Thomas

David Scott Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118187
    Abstract: A system includes a device configured to facilitate an interaction between a first fluid flow and a second fluid flow within a flow path of the device; an optical sensor configured to obtain one or more images representing the flow path; an image analysis module configured to: process the images to identify at least one droplet generated in a flow path of the device by the interaction between the first fluid flow and the second fluid flow, and estimate a size of the at least one droplet; and a control system configured to: determine that the size of the at least one droplet satisfies a threshold condition, and responsive to determining that the size of the at least one droplet satisfies the threshold condition, generate a signal that causes an adjustment to a flow rate of at least one of the first fluid flow or the second fluid flow.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 11, 2024
    Inventors: David Luther Alan Stafford, Bradley Scott Thomas
  • Publication number: 20240116054
    Abstract: A method includes flowing a first fluid through a first channel of a microfluidic apparatus and flowing a second fluid through a second channel of the microfluidic apparatus. The first fluid comprises biological material and a matrix material and is immiscible with the second fluid. The first and second fluids are combined at a junction to form droplets of the first fluid dispersed in the second fluid in a third channel. Multiple exposures of a droplet in the third channel are captured in a single image, comprising: illuminating a region of the third channel with multiple successive illumination pulses during a single frame of the imaging device; identifying the droplet and determining a velocity or a size of the droplet based on an analysis of the captured exposures; and controlling the flow of the first fluid or second fluid to obtain droplets of a target size or velocity.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 11, 2024
    Inventors: Bradley Scott Thomas, Timothy A. Miller, David Stafford
  • Patent number: 11952305
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 9, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20240112890
    Abstract: A faceplate of a showerhead has a bottom side that faces a plasma generation region and a top side that faces a plenum into which a process gas is supplied during operation of a substrate processing system. The faceplate includes apertures formed through the bottom side and openings formed through the top side. Each of the apertures is formed to extend through a portion of an overall thickness of the faceplate to intersect with at least one of the openings to form a corresponding flow path for process gas through the faceplate. Each of the apertures has a cross-section that has a hollow cathode discharge suppression dimension in at least one direction. Each of the openings has a cross-section that has a smallest cross-sectional dimension that is greater than the hollow cathode discharge suppression dimension.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 4, 2024
    Inventors: Michael John Selep, Patrick G. Breiling, Karl Frederick Leeser, Timothy Scott Thomas, David William Kamp, Sean M. Donnelly
  • Patent number: 11936017
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: March 19, 2024
    Assignee: Hyliion Inc.
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Publication number: 20230070057
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 9, 2023
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Patent number: 11522236
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 6, 2022
    Assignee: HYLIION INC.
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Patent number: 11158890
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 26, 2021
    Assignee: Hyliion Inc.
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Publication number: 20210083338
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Publication number: 20210083337
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Publication number: 20200227700
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Application
    Filed: August 17, 2018
    Publication date: July 16, 2020
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Patent number: 10700393
    Abstract: Disclosed embodiments include thermal management systems and methods configured to heat and/or cool an electrical device. Thermal management systems can include a heat spreader in thermal communication with a temperature sensitive region of the electrical device. The heat spreader can include the one or more pyrolytic graphite sheets. The heat spreader can include thermal/electrical elevators connecting the one or more pyrolytic graphite sheets. The systems can include a thermoelectric device in thermal communication with the heat spreader. Electric power can be directed to the heat spreader and/or thermoelectric device to provide controlled heating and/or cooling of the electrical device.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 30, 2020
    Assignee: GENTHERM INCORPORATED
    Inventors: Alfred Piggott, David Scott Thomas, Daniel Charles Guerithault
  • Publication number: 20200031242
    Abstract: A thermoelectric module assembly for thermally conditioning a component includes first and second heat spreaders that are spaced apart from one another and configured to respectively provide cold and hot sides. An insulator plate is arranged between the first and second heat spreaders. The insulator plate has a compression limiter. A thermoelectric device is arranged with—in the insulator plate and operatively engaged with the first and second heat spreaders. A fastening element secures the first and second heat spreaders to one another about the insulator plate in an assembled condition. The compression limiters are configured to maintain a predetermined spacing between the first and second heat spreaders in the assembled condition.
    Type: Application
    Filed: June 8, 2016
    Publication date: January 30, 2020
    Inventors: David Scott Thomas, Martin Adldinger, Shaun Peter McBride, Dumitru-Cristian Leu, Rüdiger Spillner
  • Patent number: 10513163
    Abstract: A seat thermal conditioning device includes a seat portion having a vent configured to provide conditioned air to a seat occupant neck area. A thermoelectric module is arranged in the seat portion. The thermoelectric module is configured to both heat and cool an air supply to provide the conditioned air.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 24, 2019
    Assignee: Gentherm Inc.
    Inventor: David Scott Thomas
  • Publication number: 20190058227
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 21, 2019
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Publication number: 20190054796
    Abstract: A seat thermal conditioning device includes a seat portion having a vent configured to provide conditioned air to a seat occupant neck area. A thermoelectric module is arranged in the seat portion. The thermoelectric module is configured to both heat and cool an air supply to provide the conditioned air.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 21, 2019
    Inventor: David Scott Thomas
  • Patent number: 10071612
    Abstract: A seat thermal conditioning device includes a seat portion having a vent configured to provide conditioned air to a seat occupant neck area. A thermoelectric module is arranged in the seat portion. The thermoelectric module is configured to both heat and cool an air supply to provide the conditioned air.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: September 11, 2018
    Assignee: Gentherm Inc.
    Inventor: David Scott Thomas
  • Publication number: 20180226699
    Abstract: Disclosed embodiments include thermal management systems and methods configured to heat and/or cool an electrical device. Thermal management systems can include a heat spreader in thermal communication with a temperature sensitive region of the electrical device. The heat spreader can include the one or more pyrolytic graphite sheets. The heat spreader can include thermal/electrical elevators connecting the one or more pyrolytic graphite sheets. The systems can include a thermoelectric device in thermal communication with the heat spreader. Electric power can be directed to the heat spreader and/or thermoelectric device to provide controlled heating and/or cooling of the electrical device.
    Type: Application
    Filed: January 10, 2018
    Publication date: August 9, 2018
    Inventors: Alfred Piggott, David Scott Thomas, Daniel Charles Guerithault
  • Publication number: 20180209748
    Abstract: A thermoelectric module assembly for thermally conditioning a component includes first and second members that are spaced apart from one another and are configured to respectively provide cold and hot sides. An insulator plate is arranged between the first and second members. A thermoelectric device is arranged within the insulator plate and is operatively engaged with the first and second members. A fastening element secures the first and second members to one another about the insulator plate in an assembled condition. A thermal insulator is provided in one of the first and the second members and is configured to receive the fastening element.
    Type: Application
    Filed: June 8, 2016
    Publication date: July 26, 2018
    Inventors: David Scott Thomas, Martin Adldinger, Rüdiger Spillner, Benjamin Schraff, Horst Georg Johannes Sieber
  • Publication number: 20180166758
    Abstract: A cooling system for thermally conditioning a component includes a heat spreader configured to provide a cold side. An insulator plate is arranged adjacent to the heat spreader. A thermoelectric device is arranged within the insulator plate and operatively thermally exposed on a side of the insulator plate opposite the heat spreader. A cold plate assembly is arranged adjacent to the insulator plate and operatively engages the thermoelectric device.
    Type: Application
    Filed: June 8, 2016
    Publication date: June 14, 2018
    Inventor: David Scott Thomas