Patents by Inventor David Sporleder
David Sporleder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12154763Abstract: An ion source has an arc chamber defining an arc chamber volume. A reservoir is coupled to the arc chamber, defining a reservoir volume. The reservoir receives a source species to define a liquid within the reservoir volume. A conduit fluidly couples the reservoir volume to the arc chamber volume. First and second openings of the conduit are open to the respective reservoir and arc chamber volume. A heat source selectively heats the reservoir to melt the source species at a predetermined temperature. A liquid control apparatus controls a first volume of the liquid within the reservoir volume to define a predetermined supply of the liquid to the arc chamber volume. The liquid control apparatus is a pressurized gas source fluidly coupled to the reservoir to supply a gas to the reservoir and provide a predetermined amount of liquid to the arc chamber.Type: GrantFiled: June 16, 2023Date of Patent: November 26, 2024Assignee: Axcelis Technologies, Inc.Inventors: Neil J. Bassom, Joshua Abeshaus, David Sporleder, Neil Colvin, Joseph Valinski, Michael Cristoforo, Vladimir Romanov, Pradeepa Kowrikan Subrahmnya
-
Publication number: 20240035148Abstract: An ion implantation system, ion source, and method are provided for forming an aluminum ion beam from an aluminum-containing species to an ion source. One or more of a halide species and a halide molecule are introduced to the ion source, where the halide species is selected from a group consisting of atomic chlorine, atomic bromine, and atomic iodine, and the halide molecule comprises a halide selected from a group consisting of chlorine, bromine, and iodine. The one or more of the halide species and the halide molecule clean one or more components of the ion source and further react with the aluminum-containing species to generate an aluminum-halide vapor. The aluminum ion beam is further formed from at least the aluminum-halide vapor.Type: ApplicationFiled: July 28, 2023Publication date: February 1, 2024Inventors: Neil Colvin, David Sporleder, Udo H. Verkerk, Atul Gupta, Edward Moore
-
Publication number: 20230343558Abstract: An ion source has an arc chamber defining an arc chamber volume. A reservoir is coupled to the arc chamber, defining a reservoir volume. The reservoir receives a source species to define a liquid within the reservoir volume. A conduit fluidly couples the reservoir volume to the arc chamber volume. First and second openings of the conduit are open to the respective reservoir and arc chamber volume. A heat source selectively heats the reservoir to melt the source species at a predetermined temperature. A liquid control apparatus controls a first volume of the liquid within the reservoir volume to define a predetermined supply of the liquid to the arc chamber volume. The liquid control apparatus is a pressurized gas source fluidly coupled to the reservoir to supply a gas to the reservoir and provide a predetermined amount of liquid to the arc chamber.Type: ApplicationFiled: June 16, 2023Publication date: October 26, 2023Inventors: Neil J. Bassom, Joshua Abeshaus, David Sporleder, Neil Colvin, Joseph Valinski, Michael Cristoforo, Vladimir Romanov, Pradeepa Kowrikan Subrahmnya
-
Patent number: 11756772Abstract: An ion source assembly and method has a source gas supply to provide a molecular carbon source gas to an ion source chamber. A source gas flow controller controls flow of the molecular carbon source gas to the ion source chamber. An excitation source excites the molecular carbon source gas to form carbon ions and radicals. An extraction electrode extracts the carbon ions from the ion source chamber, forming an ion beam. An oxidizing co-gas supply provides oxidizing co-gas to chamber. An oxidizing co-gas flow controller controls flow of the oxidizing co-gas to the chamber. The oxidizing co-gas decomposes and reacts with carbonaceous residues and atomic carbon forming carbon monoxide and carbon dioxide within the ion source chamber. A vacuum pump system removes the carbon monoxide and carbon dioxide, where deposition of atomic carbon within the ion source chamber is reduced and a lifetime of the ion source is increased.Type: GrantFiled: May 29, 2020Date of Patent: September 12, 2023Assignee: Axcelis Technologies, Inc.Inventors: David Sporleder, Neil Bassom, Neil K. Colvin, Mike Ameen, Xiao Xu
-
Patent number: 11728140Abstract: An ion source has an arc chamber defining an arc chamber volume. A reservoir is coupled to the arc chamber, defining a reservoir volume. The reservoir receives a source species to define a liquid within the reservoir volume. A conduit fluidly couples the reservoir volume to the arc chamber volume. First and second openings of the conduit are open to the respective reservoir and arc chamber volume. A heat source selectively heats the reservoir to melt the source species at a predetermined temperature. A liquid control apparatus controls a first volume of the liquid within the reservoir volume to define a predetermined supply of the liquid to the arc chamber volume. The liquid control apparatus is a pressurized gas source fluidly coupled to the reservoir to supply a gas to the reservoir and provide a predetermined amount of liquid to the arc chamber.Type: GrantFiled: January 31, 2022Date of Patent: August 15, 2023Assignee: Axcelis Technologies, Inc.Inventors: Neil J. Bassom, Joshua Abeshaus, David Sporleder, Neil Colvin, Joseph Valinski, Michael Cristoforo, Vladimir Romanov, Pradeepa Kowrikan Subrahmnya
-
Publication number: 20230245859Abstract: An ion source has an arc chamber defining an arc chamber volume. A reservoir is coupled to the arc chamber, defining a reservoir volume. The reservoir receives a source species to define a liquid within the reservoir volume. A conduit fluidly couples the reservoir volume to the arc chamber volume. First and second openings of the conduit are open to the respective reservoir and arc chamber volume. A heat source selectively heats the reservoir to melt the source species at a predetermined temperature. A liquid control apparatus controls a first volume of the liquid within the reservoir volume to define a predetermined supply of the liquid to the arc chamber volume. The liquid control apparatus is a pressurized gas source fluidly coupled to the reservoir to supply a gas to the reservoir and provide a predetermined amount of liquid to the arc chamber.Type: ApplicationFiled: January 31, 2022Publication date: August 3, 2023Inventors: Neil J. Bassom, Joshua Abeshaus, David Sporleder, Neil Colvin, Joseph Valinski, Michael Cristoforo, Vladimir Romanov, Pradeepa Kowrikan Subrahmnya
-
Patent number: 11545330Abstract: An ion source has an arc chamber having first and second ends and an aperture plate to enclose a chamber volume. An extraction aperture is disposed between the first and second ends. A cathode is near the first end of the arc chamber, and a repeller is near the second end. A generally U-shaped first bias electrode is on a first side of the extraction aperture within the chamber volume. A generally U-shaped second bias electrode is on a second side of the extraction aperture within the chamber volume, where the first and second bias electrodes are separated by a first distance proximate to the extraction aperture and a second distance distal from the extraction aperture. An electrode power supply provides a first and second positive voltage to the first and second bias electrodes, where the first and second positive voltages differ by a predetermined bias differential.Type: GrantFiled: May 12, 2021Date of Patent: January 3, 2023Assignee: Axcelis Technologies, Inc.Inventors: Wilhelm Platow, Paul Silverstein, Neil Bassom, Marvin Farley, David Sporleder
-
Publication number: 20220367138Abstract: An ion source has an arc chamber having first and second ends and an aperture plate to enclose a chamber volume. An extraction aperture is disposed between the first and second ends. A cathode is near the first end of the arc chamber, and a repeller is near the second end. A generally U-shaped first bias electrode is on a first side of the extraction aperture within the chamber volume. A generally U-shaped second bias electrode is on a second side of the extraction aperture within the chamber volume, where the first and second bias electrodes are separated by a first distance proximate to the extraction aperture and a second distance distal from the extraction aperture. An electrode power supply provides a first and second positive voltage to the first and second bias electrodes, where the first and second positive voltages differ by a predetermined bias differential.Type: ApplicationFiled: May 12, 2021Publication date: November 17, 2022Inventors: Wilhelm Platow, Paul Silverstein, Neil Bassom, Marvin Farley, David Sporleder
-
Publication number: 20200388468Abstract: An ion source assembly and method has a source gas supply to provide a molecular carbon source gas to an ion source chamber. A source gas flow controller controls flow of the molecular carbon source gas to the ion source chamber. An excitation source excites the molecular carbon source gas to form carbon ions and radicals. An extraction electrode extracts the carbon ions from the ion source chamber, forming an ion beam. An oxidizing co-gas supply provides oxidizing co-gas to chamber. An oxidizing co-gas flow controller controls flow of the oxidizing co-gas to the chamber. The oxidizing co-gas decomposes and reacts with carbonaceous residues and atomic carbon forming carbon monoxide and carbon dioxide within the ion source chamber. A vacuum pump system removes the carbon monoxide and carbon dioxide, where deposition of atomic carbon within the ion source chamber is reduced and a lifetime of the ion source is increased.Type: ApplicationFiled: May 29, 2020Publication date: December 10, 2020Inventors: David Sporleder, Neil Bassom, Neil K. Colvin, Mike Ameen, Xiao Xu
-
Patent number: 8937003Abstract: A technique for ion implanting a target is disclosed. In accordance with one exemplary embodiment, the technique may be realized as a method for ion implanting a target, the method comprising: providing a predetermined amount of processing gas in an arc chamber of an ion source, the processing gas containing implant species and implant species carrier, where the implant species carrier may be one of O and H; providing a predetermined amount of dilutant into the arc chamber, wherein the dilutant may comprise a noble species containing material; and ionizing the processing gas and the dilutant.Type: GrantFiled: September 13, 2012Date of Patent: January 20, 2015Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Alexander S. Perel, Craig R. Chaney, Wayne D. LeBlanc, Robert Lindberg, Antonella Cucchetti, Neil J. Bassom, David Sporleder, James Young
-
Publication number: 20130341761Abstract: A novel method and system for extending ion source life and improving ion source performance during carbon implantation are provided. Particularly, the carbon ion implant process involves utilizing a dopant gas mixture comprising carbon monoxide and one or more fluorine-containing gas with carbon. At least one fluorine containing gases with carbon is contained in the mixture at about 3-12 volume percent (vol %) based on the volume of the dopant gas mixture. Fluoride ions, radicals or combinations thereof are released from the ionized dopant gas mixture and reacts with deposits derived substantially from carbon along at least one of the surfaces of the repeller electrodes, extraction electrodes and the chamber to reduce the overall amount of deposits. In this manner, a single dopant gas mixture is capable of providing carbon ions and removing and eliminating a wide range of problematic deposits typically encountered during carbon implantation.Type: ApplicationFiled: June 20, 2012Publication date: December 26, 2013Inventors: Ashwini K. SINHA, Lloyd A. BROWN, Serge CAMPEAU, Neil J. BASSOM, David SPORLEDER
-
Publication number: 20130072008Abstract: A technique for ion implanting a target is disclosed. In accordance with one exemplary embodiment, the technique may be realized as a method for ion implanting a target, the method comprising: providing a predetermined amount of processing gas in an arc chamber of an ion source, the processing gas containing implant species and implant species carrier, where the implant species carrier may be one of O and H; providing a predetermined amount of dilutant into the arc chamber, wherein the dilutant may comprise a noble species containing material; and ionizing the processing gas and the dilutant.Type: ApplicationFiled: September 13, 2012Publication date: March 21, 2013Inventors: Alexander S. Perel, Craig R. Chaney, Wayne D. LeBlanc, Robert Lindberg, Antonella Cucchetti, Neil J. Bassom, David Sporleder, James Young