Patents by Inventor David T. Markus

David T. Markus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7974673
    Abstract: A multi-element probe array suitable for sensing or stimulating is disclosed. In one embodiment, the multi-element probe array includes a plurality of microfibers extending longitudinally and oriented substantially parallel to form a bundle. Probe elements are defined by a first subset of the microfibers displaced in a forward direction along the longitudinal axis relative to spacer elements defined by a second subset of the microfibers. Interface elements and communication elements are disposed on the probe elements.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: July 5, 2011
    Assignee: Sterling Investments, LC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7881578
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 1, 2011
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7787939
    Abstract: The present invention is drawn toward miniaturized imaging devices. In one embodiment, the device can include a utility guide having at least one aperture configured for supporting utilities, and an SSID carried by the utility guide. The SSID can include an imaging array on a top surface, and a conductive element on a side surface, wherein the imaging array is electrically coupled to the conductive element. Further, a lens can be optically coupled to the imaging array, and an umbilical, including a conductive line, can be carried by the at least one aperture. The conductive line can be electrically coupled to the conductive element on the side surface of the SSID. Alternatively, the device can include an SSID having, as an integral structure, an imaging array electrically coupled to a conductive pad, wherein the SSID further includes at least one utility aperture passing therethrough.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: August 31, 2010
    Assignee: Sterling LC
    Inventors: Stephen C. Jacobsen, David T. Markus, Ralph W. Pensel
  • Publication number: 20100116869
    Abstract: Devices and methods for electrical interconnection for microelectronic circuits are disclosed. One method of electrical interconnection includes forming a bundle of microfilaments, wherein at least two of the microfilaments include electrically conductive portions extending along their lengths. The method can also include bonding the microfilaments to corresponding bond pads of a microelectronic circuit substrate to form electrical connections between the electrically conductive portions and the corresponding bond pads. A microelectronic circuit can include a bundle of microfilaments bonded to corresponding bond pads to make electrical connection between corresponding bonds pads and electrically-conductive portions of the microfilaments.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Publication number: 20100112865
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Application
    Filed: October 22, 2009
    Publication date: May 6, 2010
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7680377
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 16, 2010
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7629659
    Abstract: A miniaturized imaging device and method of viewing small luminal cavities are described. The imaging device can be used as part of a catheter, and can include a lens, an SSID including an imaging array optically coupled to the lens; an umbilical including a conductive line; and an adaptor configured to support the lens and provide electrical communication between the SSID and conductive line. Alternatively, the adaptor can be a rigid adaptor configured to provide electrical communication between the SSID and the conductive line through a conductive path. The conductive path can be configured along multiple contiguous surfaces of the adaptor such that the SSID is electrically coupled to the conductive path at a first surface, and the conductive line is electrically coupled to the conductive path at a second surface.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 8, 2009
    Assignee: Sterling LC
    Inventors: Stephen C. Jacobsen, David T. Markus, David P. Marceau, Ralph W. Pensel
  • Patent number: 7626123
    Abstract: Devices and methods for electrical interconnection for microelectronic circuits are disclosed. One method of electrical interconnection includes forming a bundle of microfilaments, wherein at least two of the microfilaments include electrically conductive portions extending along their lengths. The method can also include bonding the microfilaments to corresponding bond pads of a microelectronic circuit substrate to form electrical connections between the electrically conductive portions and the corresponding bond pads. A microelectronic circuit can include a bundle of microfilaments bonded to corresponding bond pads to make electrical connection between corresponding bonds pads and electrically-conductive portions of the microfilaments.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: December 1, 2009
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7603153
    Abstract: A multi-element probe array suitable for sensing or stimulating is disclosed. In one embodiment, the multi-element probe array includes a plurality of microfibers extending longitudinally and oriented substantially parallel to form a bundle. Probe elements are defined by a first subset of the microfibers displaced in a forward direction alone the longitudinal axis relative to spacer elements defined by a second subset of the microfibers. Interface elements and communication elements are disposed on the probe elements.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: October 13, 2009
    Assignee: Sterling Investments LC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7591780
    Abstract: A miniaturized imaging device and method of viewing small luminal cavities are described. The imaging device can be used as part of a catheter, and can include a lens, an SSID including an imaging array optically coupled to the lens; an umbilical including a conductive line; and an adaptor configured to support the lens and provide electrical communication between the SSID and conductive line. Alternatively, the adaptor can be a rigid adaptor configured to provide electrical communication between the SSID and the conductive line through a conductive path. The conductive path can be configured along multiple contiguous surfaces of the adaptor such that the SSID is electrically coupled to the conductive path at a first surface, and the conductive line is electrically coupled to the conductive path at a second surface.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: September 22, 2009
    Assignee: Sterling LC
    Inventors: Stephen C. Jacobsen, David T. Markus, David P. Marceau, Ralph W. Pensel
  • Publication number: 20090204195
    Abstract: A multi-element probe array suitable for sensing or stimulating is disclosed. In one embodiment, the multi-element probe array includes a plurality of microfibers extending longitudinally and oriented substantially parallel to form a bundle. Probe elements are defined by a first subset of the microfibers displaced in a forward direction along the longitudinal axis relative to spacer elements defined by a second subset of the microfibers. Interface elements and communication elements are disposed on the probe elements.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 13, 2009
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Publication number: 20080185672
    Abstract: A miniaturized imaging device and method of viewing small luminal cavities are described. The imaging device can be used as part of a catheter, and can include a lens, an SSID including an imaging array optically coupled to the lens; an umbilical including a conductive line; and an adaptor configured to support the lens and provide electrical communication between the SSID and conductive line. Alternatively, the adaptor can be a rigid adaptor configured to provide electrical communication between the SSID and the conductive line through a conductive path. The conductive path can be configured along multiple contiguous surfaces of the adaptor such that the SSID is electrically coupled to the conductive path at a first surface, and the conductive line is electrically coupled to the conductive path at a second surface.
    Type: Application
    Filed: March 27, 2008
    Publication date: August 7, 2008
    Inventors: Stephen C. Jacobsen, David T. Markus, David P. Marceau, Ralph W. Pensel
  • Patent number: 7166537
    Abstract: A miniaturized imaging device and method of viewing small luminal cavities are described. The imaging device can be used as part of a catheter, and can include a lens, an SSID including an imaging array optically coupled to the lens; an umbilical including a conductive line; and an adaptor configured to support the lens and provide electrical communication between the SSID and conductive line. Alternatively, the adaptor can be a rigid adaptor configured to provide electrical communication between the SSID and the conductive line through a conductive path. The conductive path can be configured along multiple contiguous surfaces of the adaptor such that the SSID is electrically coupled to the conductive path at a first surface, and the conductive line is electrically coupled to the conductive path at a second surface.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: January 23, 2007
    Assignee: Sarcos Investments LC
    Inventors: Stephen C. Jacobsen, David T. Markus, David P. Marceau, Ralph W. Pensel
  • Publication number: 20030222325
    Abstract: A miniaturized imaging device and method of viewing small luminal cavities are described. The imaging device can be used as part of a catheter, and can include a lens, an SSID including an imaging array optically coupled to the lens; an umbilical including a conductive line; and an adaptor configured to support the lens and provide electrical communication between the SSID and conductive line. Alternatively, the adaptor can be a rigid adaptor configured to provide electrical communication between the SSID and the conductive line through a conductive path. The conductive path can be configured along multiple contiguous surfaces of the adaptor such that the SSID is electrically coupled to the conductive path at a first surface, and the conductive line is electrically coupled to the conductive path at a second surface.
    Type: Application
    Filed: March 17, 2003
    Publication date: December 4, 2003
    Applicant: Sarcos Investments LC.
    Inventors: Stephen C. Jacobsen, David T. Markus, David P. Marceau, Ralph W. Pensel
  • Publication number: 20030220574
    Abstract: The present invention is drawn toward miniaturized imaging devices. In one embodiment, the device can include a utility guide having at least one aperture configured for supporting utilities, and an SSID carried by the utility guide. The SSID can include an imaging array on a top surface, and a conductive element on a side surface, wherein the imaging array is electrically coupled to the conductive element. Further, a lens can be optically coupled to the imaging array, and an umbilical, including a conductive line, can be carried by the at least one aperture. The conductive line can be electrically coupled to the conductive element on the side surface of the SSID. Alternatively, the device can include an SSID having, as an integral structure, an imaging array electrically coupled to a conductive pad, wherein the SSID further includes at least one utility aperture passing therethrough.
    Type: Application
    Filed: March 17, 2003
    Publication date: November 27, 2003
    Applicant: Sarcos Investments LC.
    Inventors: David T. Markus, Ralph W. Pensel, Stephen C. Jacobsen