Patents by Inventor David T. Niksa

David T. Niksa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230089571
    Abstract: Provided is a flow modification component for use with a muffler, which can be a Helmholtz resonator muffler, a side branch muffler, or a Y-pipe. The flow modification component includes a porous plate adapted for incorporation into a passage to a sound muffling portion connected to a through passage pipe of the muffler or Y-pipe. One or more openings are formed on the porous plate to allow low frequency acoustic waves to pass through into the passage to the sound muffling portion while reducing large-scale turbulent eddies that produce undesirable resonant tones within the aperture tube to small-scale turbulent eddies. The openings having sufficient porosity such that the resulting sound frequency is determined by size, shape, number, and spacing of the openings. The flow modification component can also include a dissipative material component in an internal port passage of the muffler to further reduce resonant tones.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 23, 2023
    Inventors: David T. NIKSA, John D. HAMMETT, Dennis L. HUFF
  • Publication number: 20200080451
    Abstract: Provided is a flow modification component for use with a muffler, which can be a Helmholtz resonator muffler, a side branch muffler, or a Y-pipe. The flow modification component includes a porous plate adapted for incorporation into a passage to a sound muffling portion connected to a through passage pipe of the muffler or Y-pipe. One or more openings are formed on the porous plate to allow low frequency acoustic waves to pass through into the passage to the sound muffling portion while reducing large-scale turbulent eddies that produce undesirable resonant tones within the aperture tube to small-scale turbulent eddies. The openings having sufficient porosity such that the resulting sound frequency is determined by size, shape, number, and spacing of the openings. The flow modification component can also include a dissipative material component in an internal port passage of the muffler to further reduce resonant tones.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 12, 2020
    Applicant: TMG Performance Products, LLC
    Inventors: David T. Niksa, John D. Hammett, Dennis L. Huff