Patents by Inventor David Thomas Margulies

David Thomas Margulies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8263239
    Abstract: A laminated magnetic recording structure for use in perpendicular or longitudinal recording is described. A small amount of ferromagnetic coupling is added between the two magnetic layers that are sufficiently decoupled to switch independently. In one embodiment the coupling is achieved by doping the spacer layer with a ferromagnetic material. Ruthenium (Ru), which is a preferred nonmagnetic material for spacer layers with cobalt (Co) being the preferred magnetic material. The weak ferromagnetic coupling can also be achieved through the use of platinum, palladium and alloys thereof for the spacer layer without the addition of a ferromagnetic element, but alternatively they can also be doped with ferromagnetic elements. For embodiments for perpendicular recording the spacer layer further can additionally comprise oxides of one or more elements selected from the group consisting of Si, Ta, Ti, Nb, Cr, V and B.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: September 11, 2012
    Assignee: HGST Netherlands B.V.
    Inventors: Andreas Klaus Berger, Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 7976964
    Abstract: The invention includes a disk drive with a magnetic recording disk with an upper and lower sublayer in at least one magnetic layer of a laminated magnetic layer structure that includes a spacer layer that substantially decouples the magnetic layers. The lower sublayer has a lower boron content than the upper sublayer and a preferred embodiment is CoPtCrBTa. The upper sublayer is deposited onto the lower sublayer and is preferably CoPtCrB with a higher boron content than the lower sublayer. The composition of the lower sublayer gives it a very low moment with low intrinsic coercivity which would not be useful as a recording layer on its own. The upper sublayer is a higher moment alloy with high intrinsic coercivity. An embodiment of the invention includes a laminated magnetic layer structure which is antiferromagnetically coupled to a lower ferromagnetic layer.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: July 12, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 7846563
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 may have a coupling layer (CL) located between them that permits ferromagnetic exchange coupling of MAG1 with MAG2. The LCL is located either above or below MAG1 and in direct contact with MAG1 and mediates an effective intergranular exchange coupling in MAG1. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG1, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other non-metallic segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Eric E. Fullerton, Byron Hassberg Lengsfield, III, David Thomas Margulies
  • Publication number: 20090290256
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 may have a coupling layer (CL) located between them that permits ferromagnetic exchange coupling of MAG1 with MAG2. The LCL is located either above or below MAG1 and in direct contact with MAG1 and mediates an effective intergranular exchange coupling in MAG1. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG1, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other non-metallic segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Application
    Filed: August 3, 2009
    Publication date: November 26, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Andreas Klaus Berger, Eric E. Fullerton, Byron Hassberg Lengsfield, III, David Thomas Margulies
  • Patent number: 7588841
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 may have a coupling layer (CL) located between them that permits ferromagnetic exchange coupling of MAG1 with MAG2. The LCL is located either above or below MAG1 and in direct contact with MAG1 and mediates an effective intergranular exchange coupling in MAG1. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG1, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other non-metallic segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: September 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Eric E. Fullerton, Byron Hassberg Lengsfield, III, David Thomas Margulies
  • Patent number: 7556870
    Abstract: An embodiment of the invention is a layered magnetic thin film structure that uses antiferromagnetically coupled (AFC) magnetic layers where the top layer structure consists of an upper magnetic layer that is weakly ferromagnetically coupled via a nonmagnetic or weakly magnetic exchange coupling layer (interlayer) to a ferromagnetic exchange enhancing layer that is in turn, AF coupled to the lower ferromagnetic layer of the AFC structure. Preferred materials for the weak coupling layer include alloys of cobalt such as CoRu, CoBRu and CoCr in which the Co content is below the point at which the material would be ferromagnetic. A second embodiment of the invention is a laminated, AF-coupled media structure. In this structure the lower AFC layer that makes up the lower laminate layer includes: the middle magnetic layer, the weak ferromagnetic coupling layer, and the exchange enhancing layer.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: July 7, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 7479332
    Abstract: A method and apparatus for improving the signal-to-noise ratio in a longitudinal recording media is disclosed. The apparatus includes a first recording layer of the longitudinal recording media residing at the top of a recording media structure. The first recording layer includes an upper sublayer comprised of a CoPtCrB-based alloy material. The first recording layer also includes a lower sublayer comprised of a CoPtCrB-based alloy material and a middle sublayer comprised of a CoCrB-alloy. The middle sublayer is coupled to the upper sublayer and to the lower sublayer and is substantially thinner than the upper sublayer and the lower sublayer.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: January 20, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Eric Edward Fullerton, David Thomas Margulies, Natacha Supper, Hoa Van Do
  • Publication number: 20080261078
    Abstract: A perpendicular magnetic recording system and medium has a multilayered recording layer that includes an exchange-spring structure and a ferromagnetic lateral coupling layer (LCL). The exchange-spring structure is made up of two ferromagnetically exchange-coupled magnetic layers (MAG1 and MAG2), each with perpendicular magnetic anisotropy. MAG1 and MAG2 may have a coupling layer (CL) located between them that permits ferromagnetic exchange coupling of MAG1 with MAG2. The LCL is located either above or below MAG1 and in direct contact with MAG1 and mediates an effective intergranular exchange coupling in MAG1. The ferromagnetic alloy in the LCL has significantly greater intergranular exchange coupling than the ferromagnetic alloy in MAG1, which typically will include segregants such as oxides. The LCL is preferably free of oxides or other non-metallic segregants, which would tend to reduce intergranular exchange coupling in the LCL.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B. V.
    Inventors: Andreas Klaus Berger, Eric E. Fullerton, Byron Hassberg Lengsfield, David Thomas Margulies
  • Patent number: 7425377
    Abstract: A laminate structure is disclosed comprising multiple ferromagnetic layers achieving incoherent reversal while maintaining good SNR. A high magnetic moment density, low anisotropy field material may form a thin overlayer deposited over a high-anisotropy media layer. The media layer may have a lower magnetic moment density than the overlayer and have decoupled magnetic grains. A coupling layer may be interposed between the overlayer and the media layer to modulate the exchange there between, thereby reducing the pass-through of noise while still promoting incoherent reversal to achieve reduced write energy requirements.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: September 16, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Eric Edward Fullerton, Hoa Van Do, David Thomas Margulies, Natacha Supper
  • Publication number: 20080144213
    Abstract: A perpendicular magnetic recording layer (RL) structure has multiple granular ferromagnetic layers (MAGs) that are separated by ferromagnetic exchange-coupling layers (ECLs) as interlayers between the MAGS. The ECLs provide effective intergranular exchange-coupling in the MAGs. Each MAG is sufficiently thick to support independent recording states that are thermally stable, and does not rely on the overall RL thickness for thermal stability. Each ECL has significant intralayer coupling of its grains. The material of the ECL may be a CoCr alloy, such as a CoCrPtB alloy. The Cr and B in the ECL create sam11 segregation regions or sub-grains in the ECL that are exchange-coupled on a length-scale smaller than the grain size. For each MAG grain, there exist a multitude of magnetic states corresponding to different transition positions in the ECL.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Andreas Klaus Berger, David Thomas Margulies, Natacha F. Supper
  • Publication number: 20080138662
    Abstract: A perpendicular magnetic recording medium has a multilayer recording layer (RL) structure that includes a ferromagnetic intergranular exchange enhancement layer for mediating intergranular exchange coupling in the other ferromagnetic layers in the RL structure. The RL structure may be a multilayer of a first ferromagnetic layer (MAG1) of granular polycrystalline Co alloy with Ta-oxide, a second ferromagnetic layer (MAG2) of granular polycrystalline Co alloy with Si-oxide, and an oxide-free CoCr capping layer on top of and in contact with MAG2 for mediating intergranular exchange coupling in MAG1 and MAG2. The RL structure may also be a multilayer of an intergranular exchange enhancement interlayer (IL) in between two ferromagnetic layers, MAG1 and MAG2, each with reduced or no intergranular exchange coupling. Because the IL is in direct contact with both MAG1 and MAG2, it directly mediates intergranular exchange coupling in each of MAG1 and MAG2.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 12, 2008
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Andreas Klaus Berger, Qing Dai, Hoa Van Do, Yoshihiro Ikeda, David Thomas Margulies, Natacha F. Supper, Kentaro Takano, Min Xiao
  • Publication number: 20070298285
    Abstract: A laminated magnetic recording structure for use in perpendicular or longitudinal recording is described. A small amount of ferromagnetic coupling is added between the two magnetic layers that are sufficiently decoupled to switch independently. In one embodiment the coupling is achieved by doping the spacer layer with a ferromagnetic material. Ruthenium (Ru), which is a preferred nonmagnetic material for spacer layers with cobalt (Co) being the preferred magnetic material. The weak ferromagnetic coupling can also be achieved through the use of platinum, palladium and alloys thereof for the spacer layer without the addition of a ferromagnetic element, but alternatively they can also be doped with ferromagnetic elements. For embodiments for perpendicular recording the spacer layer further can additionally comprise oxides of one or more elements selected from the group consisting of Si, Ta, Ti, Nb, Cr, V and B.
    Type: Application
    Filed: June 26, 2006
    Publication date: December 27, 2007
    Inventors: Andreas Klaus Berger, Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Natacha Frederique Supper
  • Patent number: 6928723
    Abstract: An exchange-coupled magnetic structure of a cobalt-ferrite layer adjacent a magnetic metal layer is used in magnetorestive sensors, such as spin valves or tunnel junction valves. The exchange-coupled magnetic structure is used in a pinning structure pinning the magnetization of a ferromagnetic pinned layer, or in an AP pinned layer. A low coercivity ferrite may be used in an AP free layer. Cobalt-ferrite layers may be formed by co-sputtering of Co and Fe in an oxygen/argon gas mixture, or by sputtering of a CoFe2 composition target in an oxygen/argon gas mixture. Alternatively, the cobalt-ferrite layer may be formed by evaporation of Co and Fe from an alloy source or separate sources along with a flux of oxygen atoms from a RF oxygen atom beam source. Magnetoresistive sensors including cobalt-ferrite layers have small read gaps and produce large signals with high efficiency.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 16, 2005
    Assignee: International Business Machines Corporation
    Inventors: Matthew Joseph Carey, Hoa Van Do, Robin Frederick Charles Farrow, Bruce Alvin Gurney, David Thomas Margulies, Ronald Franklin Marks, Philip Milton Rice, Ren Xu
  • Patent number: 6803119
    Abstract: This invention provides a disk which has an in-plane oriented magnetic recording layer on a glass, ceramic, or other nonmetal substrate and a method for making the disc. A thin layer of texturable NiP is sputtered on the substrate. This NiP layer is textured before the magnetic layer is deposited. The disk combines all the advantages of a glass or ceramic substrate along with the advantages of an oriented magnetic medium.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: October 12, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Thomas Margulies, Timothy Martin Reith, Hoa Do, Tim Minvielle, James A. Hagan
  • Patent number: 6773834
    Abstract: A laminated magnetic recording medium for data storage has an antiferromagnetically-coupled (AFC) layer and a single ferromagnetic layer spaced apart by a nonferromagnetic spacer layer. The AFC layer is formed as two ferromagnetic films antiferromagnetically coupled together across an antiferromagnetically coupling film that has a composition and thickness to induce antiferromagnetic coupling. In each of the two remanent magnetic states, the magnetic moments of the two antiferromagnetically-coupled films in the AFC layer are oriented antiparallel, and the magnetic moment of the single ferromagnetic layer and the greater-moment ferromagnetic film of the AFC layer are oriented parallel. The nonferromagnetic spacer layer between the AFC layer and the single ferromagnetic layer has a composition and thickness to prevent antiferromagnetic exchange coupling. The laminated medium has improved thermal stability and reduced intrinsic media noise.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: August 10, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Eric Edward Fullerton, David Thomas Margulies, Hal Jervis Rosen
  • Publication number: 20040134060
    Abstract: An exchange-coupled magnetic structure of a cobalt-ferrite layer adjacent a magnetic metal layer is used in magnetorestive sensors, such as spin valves or tunnel junction valves. The exchange-coupled magnetic structure is used in a pinning structure pinning the magnetization of a ferromagnetic pinned layer, or in an AP pinned layer. A low coercivity ferrite may be used in an AP free layer. Cobalt-ferrite layers may be formed by co-sputtering of Co and Fe in an oxygen/argon gas mixture, or by sputtering of a CoFe2 composition target in an oxygen/argon gas mixture. Alternatively, the cobalt-ferrite layer may be formed by evaporation of Co and Fe from an alloy source or separate sources along with a flux of oxygen atoms from a RF oxygen atom beam source. Magnetoresistive sensors including cobalt-ferrite layers have small read gaps and produce large signals with high efficiency.
    Type: Application
    Filed: December 23, 2003
    Publication date: July 15, 2004
    Inventors: Matthew Joseph Carey, Hoa Van Do, Robin Frederick Charles Farrow, Bruce Alvin Gurney, David Thomas Margulies, Ronald Franklin Marks, Philip Milton Rice, Ren Xu
  • Patent number: 6723450
    Abstract: A magnetic recording medium for data storage uses a magnetic recording layer having at least two ferromagnetic films with different remanent magnetization-thickness (Mrt) values that are coupled antiparallel across a nonferromagnetic spacer film predominantly by the dipole field (Hd) from the grains of the higher-Mrt ferromagnetic film. The material compositions and thicknesses of the ferromagnetic films and the nonferromagnetic spacer film are selected so that Hd predominates over any antiferromagnetic exchange coupling field (Haf) and is greater than the coercive field of the lower-Mrt ferromagnetic film. As a result, the magnetizations of the two ferromagnetic films are antiparallel in the two remanent magnetic states, and thus the net remanent magnetization-thickness product (Mrt) of the recording layer is the difference in the Mrt values of the two ferromagnetic films.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: April 20, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hoa Van Do, Mary F. Doerner, Eric Edward Fullerton, David Thomas Margulies, William G. McChesney, Manfred Ernst Schabes, Kai Tang
  • Patent number: 6721144
    Abstract: An exchange-coupled magnetic structure of a cobalt-ferrite layer adjacent a magnetic metal layer is used in magnetorestive sensors, such as spin valves or tunnel junction valves. The exchange-coupled magnetic structure is used in a pinning structure pinning the magnetization of a ferromagnetic pinned layer, or in an AP pinned layer. A low coercivity ferrite may be used in an AP free layer. Cobalt-ferrite layers may be formed by co-sputtering of Co and Fe in an oxygen/argon gas mixture, or by sputtering of a CoFe2 composition target in an oxygen/argon gas mixture. Alternatively, the cobalt-ferrite layer may be formed by evaporation of Co and Fe from an alloy source or separate sources along with a flux of oxygen atoms from a RF oxygen atom beam source. Magnetoresistive sensors including cobalt-ferrite layers have small read gaps and produce large signals with high efficiency.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: April 13, 2004
    Assignee: International Business Machines Corporation
    Inventors: Matthew Joseph Carey, Hoa Van Do, Robin Frederick Charles Farrow, Bruce Alvin Gurney, David Thomas Margulies, Ronald Franklin Marks, Philip Milton Rice, Ren Xu
  • Patent number: 6670032
    Abstract: This invention provides a disk which has an in-plane oriented magnetic recording layer on a glass, ceramic, or other nonmetallic substrate and a method for making the disk. A thin layer of material is deposited on the substrate to form a texture stop layer. A texturable layer is then deposited on the texture stop layer. This texturable layer is textured before the magnetic layer is deposited. The disk combines all the advantages of a glass or ceramic substrate along with the advantages of an oriented magnetic medium.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: December 30, 2003
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Thomas Margulies, Timothy Martin Reith, Hoa Do, Tim Minvielle, James A. Hagan
  • Publication number: 20030180577
    Abstract: A magnetic recording medium for data storage uses a magnetic recording layer having at least two ferromagnetic films with different remanent magnetization-thickness (Mrt) values that are coupled antiparallel across a nonferromagnetic spacer film predominantly by the dipole field (Hd) from the grains of the higher-Mrt ferromagnetic film. The material compositions and thicknesses of the ferromagnetic films and the nonferromagnetic spacer film are selected so that Hd predominates over any antiferromagnetic exchange coupling field (Haf) and is greater than the coercive field of the lower-Mrt ferromagnetic film. As a result, the magnetizations of the two ferromagnetic films are antiparallel in the two remanent magnetic states, and thus the net remanent magnetization-thickness product (Mrt) of the recording layer is the difference in the Mrt values of the two ferromagnetic films.
    Type: Application
    Filed: March 19, 2002
    Publication date: September 25, 2003
    Inventors: Hoa Van Do, Mary F. Doerner, Eric Edward Fullerton, David Thomas Margulies, William G. McChesney, Manfred Ernst Schabes, Kai Tang