Patents by Inventor David Tinch
David Tinch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250209758Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: ApplicationFiled: March 10, 2025Publication date: June 26, 2025Applicant: Magic Leap, Inc.Inventors: Brian T. SCHOWENGERDT, Ivan Li Chuen YEOH, John Graham MACNAMARA, Michael Anthony KLUG, Lionel Ernest EDWIN, David TINCH, Mathew D. WATSON, William Hudson WELCH
-
Publication number: 20250199324Abstract: Embodiments of this disclosure provides systems and methods for displays. In embodiments, a display system includes a frame, an eyepiece coupled to the frame, and a first adhesive bond disposed between the frame and the eyepiece. The eyepiece can include a light input region and a light output region. The first adhesive bond can be disposed along a first portion of a perimeter of the eyepiece, where the first portion of the perimeter of the eyepiece borders the light input region such that the first adhesive bond is configured to maintain a position of the light input region relative to the frame.Type: ApplicationFiled: March 4, 2025Publication date: June 19, 2025Inventors: Stephen Richard RUGG, Ali KARBASI, Jason Donald MARENO, Bach NGUYEN, Philip F. BRUNE, David TINCH, Samarth BHARGAVA
-
Patent number: 12332444Abstract: An example head-mounted display device includes a light projector, an optical assembly arranged to direct light from a light projector to a user, and an actuator module. The optical assembly includes a variable focus lens assembly including a rigid refractive component, a shaper ring defining an aperture, and a flexible lens membrane between the shaper ring and the rigid refractive component and covering the aperture. The refractive component, the shaper ring, and the lens membrane are arranged along an axis. The refractive component and the lens membrane define a chamber containing a volume of fluid. The actuator module is configured to adjust an optical power of the variable focus lens by moving the shaper ring relative to the refractive component along the axis, such that a curvature of the lens membrane in the aperture is modified.Type: GrantFiled: May 22, 2020Date of Patent: June 17, 2025Assignee: Magic Leap, Inc.Inventors: Timothy Mark Dalrymple, David Tinch, Michael Anthony Klug, Clinton Carlisle, Jason Donald Mareno, Arno Leon Konings, Christopher Peter Couste, Charles Robert Schabacker, Bach Nguyen, Christopher John Laning, Roman Patscheider
-
Patent number: 12277658Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: GrantFiled: February 2, 2024Date of Patent: April 15, 2025Assignee: Magic Leap, Inc.Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
-
Publication number: 20250102721Abstract: A display system includes a plurality of light pipes and a plurality of light sources configured to emit light into the light pipes. The display system also comprises a spatial light modulator configured to modulate light received from the light pipes to form images. The display system may also comprise one or more waveguides configured to receive modulated light from the spatial light modulator and to relay that light to a viewer.Type: ApplicationFiled: December 10, 2024Publication date: March 27, 2025Inventors: Kevin Curtis, Heidi Leising Hall, Pierre St. Hilaire, David Tinch
-
Patent number: 12204132Abstract: In some embodiments, a display system is provided. The display system comprises a plurality of light pipes and a plurality of light sources configured to emit light into the light pipes. The display system also comprises a spatial light modulator configured to modulate light received from the light pipes to form images. The display system may also comprise one or more waveguides configured to receive modulated light from the spatial light modulator and to relay that light to a viewer.Type: GrantFiled: September 9, 2020Date of Patent: January 21, 2025Assignee: MAGIC LEAP, INC.Inventors: Kevin Curtis, Heidi Leising Hall, Pierre St. Hilaire, David Tinch
-
Publication number: 20240177429Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: ApplicationFiled: February 2, 2024Publication date: May 30, 2024Applicant: Magic Leap, Inc.Inventors: Brian T. SCHOWENGERDT, Mathew D. WATSON, David TINCH, Ivan Li Chuen YEOH, John Graham MACNAMARA, Lionel Ernest EDWIN, Michael Anthony KLUG, William Hudson WELCH
-
Publication number: 20240168300Abstract: Embodiments of this disclosure provides systems and methods for displays. In embodiments, a display system includes a frame, an eyepiece coupled to the frame, and a first adhesive bond disposed between the frame and the eyepiece. The eyepiece can include a light input region and a light output region. The first adhesive bond can be disposed along a first portion of a perimeter of the eyepiece, where the first portion of the perimeter of the eyepiece borders the light input region such that the first adhesive bond is configured to maintain a position of the light input region relative to the frame.Type: ApplicationFiled: March 11, 2022Publication date: May 23, 2024Inventors: Stephen Richard RUGG, Ali KARVASI, Jason Donald MARENO, Bach NGUYEN, Philip F. BRUNE, David TINCH, Smarth BHARGAVA
-
Patent number: 11935206Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: GrantFiled: April 5, 2023Date of Patent: March 19, 2024Assignee: Magic Leap, IncInventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
-
Publication number: 20230237749Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: ApplicationFiled: April 5, 2023Publication date: July 27, 2023Applicant: Magic Leap, Inc.Inventors: Brian T. SCHOWENGERDT, Mathew D. WATSON, David TINCH, Ivan Li Chuen YEOH, John Graham MACNAMARA, Lionel Ernest EDWIN, Michael Anthony KLUG, William Hudson WELCH
-
Patent number: 11662585Abstract: A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.Type: GrantFiled: January 7, 2021Date of Patent: May 30, 2023Assignee: Magic Leap, Inc.Inventors: Ivan Yeoh, Hui-Chuan Cheng, Lionel Ernest Edwin, David Tinch, William Hudson Welch
-
Patent number: 11651566Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: GrantFiled: July 30, 2021Date of Patent: May 16, 2023Assignee: Magic Leap, Inc.Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
-
Patent number: 11624919Abstract: An example head-mounted display device includes a light projector, an optical assembly arranged to direct light from a light projector to a user, and an actuator module. The optical assembly includes a variable focus lens assembly including a rigid refractive component, a shaper ring defining an aperture, and a flexible lens membrane between the shaper ring and the rigid refractive component and covering the aperture. The refractive component, the shaper ring, and the lens membrane are arranged along an axis. The refractive component and the lens membrane define a chamber containing a volume of fluid. The actuator module is configured to adjust an optical power of the variable focus lens by moving the shaper ring relative to the refractive component along the axis, such that a curvature of the lens membrane in the aperture is modified.Type: GrantFiled: May 22, 2020Date of Patent: April 11, 2023Assignee: Magic Leap, Inc.Inventors: Timothy Mark Dalrymple, David Tinch, Michael Anthony Klug, Clinton Carlisle, Jason Donald Mareno, Arno Leon Konings, Christopher Peter Couste, Charles Robert Schabacker, Bach Nguyen, Christopher John Laning, Roman Patscheider
-
Publication number: 20220221710Abstract: An example head-mounted display device includes a light projector, an optical assembly arranged to direct light from a light projector to a user, and an actuator module. The optical assembly includes a variable focus lens assembly including a rigid refractive component, a shaper ring defining an aperture, and a flexible lens membrane between the shaper ring and the rigid refractive component and covering the aperture. The refractive component, the shaper ring, and the lens membrane are arranged along an axis. The refractive component and the lens membrane define a chamber containing a volume of fluid. The actuator module is configured to adjust an optical power of the variable focus lens by moving the shaper ring relative to the refractive component along the axis, such that a curvature of the lens membrane in the aperture is modified.Type: ApplicationFiled: May 22, 2020Publication date: July 14, 2022Inventors: Timothy Mark DALRYMPLE, David TINCH, Michael Anthony KLUG, Clinton CARLISLE, Jason Donald MARENO, Arno Leon KONINGS, Christopher Peter COUSTE, Charles Robert SCHABACKER, Bach NGUYEN, Christopher John LANING, Roman PATSCHEIDER
-
Patent number: 11317064Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a display, an optical fiber having a polarization-maintaining (PM) transmission fiber section and a non-PM scanning fiber section, a light source configured for injecting a linearly polarized light beam into the transmission fiber section, such that the linearly polarized light beam is emitted from the scanning fiber section, a mechanical scanning drive assembly in which the scanning fiber section is affixed, wherein the mechanical scanning drive assembly is configured for displacing the scanning optical fiber section is order to scan the emitted light beam, and a display configured for receiving the scanned light beam and generating an image to the end user.Type: GrantFiled: January 8, 2020Date of Patent: April 26, 2022Assignee: Magic Leap, Inc.Inventors: Ivan Yeoh, Lionel Ernest Edwin, David Tinch
-
Patent number: 11256095Abstract: Systems and methods are provided for selectively incoupling light having different wavelengths into one of a plurality of waveguides. The systems and methods provided for selectively incoupling light having different wavelengths into one of a plurality of waveguides comprise a switching device comprising switchable reflective elements that can be configured to redirect incoming light towards an incoupling element associated with one of a plurality of waveguides.Type: GrantFiled: January 6, 2020Date of Patent: February 22, 2022Assignee: Magic Leap, Inc.Inventors: David Tinch, William K. Jones
-
Publication number: 20210358224Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: ApplicationFiled: July 30, 2021Publication date: November 18, 2021Applicant: Magic Leap, Inc.Inventors: Brian T. SCHOWENGERDT, Mathew D. WATSON, David TINCH, Ivan Li Chuen YEOH, John Graham Macnamara, Lionel Ernest EDWIN, Michael Anthony KLUG, William Hudson WELCH
-
Patent number: 11107288Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.Type: GrantFiled: June 16, 2020Date of Patent: August 31, 2021Assignee: Magic Leap, Inc.Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
-
Publication number: 20210157146Abstract: A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.Type: ApplicationFiled: January 7, 2021Publication date: May 27, 2021Applicant: MAGIC LEAP, INC.Inventors: Ivan Yeoh, Hui-Chuan Cheng, Lionel Ernest Edwin, David Tinch, William Hudson Welch
-
Patent number: 10935792Abstract: A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.Type: GrantFiled: April 23, 2019Date of Patent: March 2, 2021Assignee: Magic Leap, Inc.Inventors: Ivan Yeoh, Hui-Chuan Cheng, Lionel Ernest Edwin, David Tinch, William Hudson Welch