Patents by Inventor David U. Furrer

David U. Furrer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10369625
    Abstract: A method for casting comprising: providing a seed, the seed characterized by: an arcuate form and a crystalline orientation progressively varying along an arc of the form; providing molten material; and cooling and solidifying the molten material so that a crystalline structure of the seed propagates into the solidifying material.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 6, 2019
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Paul D. Genereux, Alan D. Cetel, John J. Marcin, Jr., Steven J. Bullied, Mario P. Bochiechio, Kevin W. Schlichting, Bradford A. Cowles, Carl R. Verner, David U. Furrer, Venkatarama K. Seetharaman
  • Publication number: 20190219337
    Abstract: A heat exchanger includes an additively manufactured manifold. The manifold includes an inlet feed manifold and an outlet feed manifold, and a plurality of hypotubes fluidly coupled to the manifold. The hypotubes are round in cross-section, wherein each of the hypotubes has a diameter that has a first value between 0.03 inches and 0.3 inches, and wherein each of the hypotubes has a wall thickness that has a second value between 0.001 inches and 0.0.015 inches.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 18, 2019
    Inventors: Wendell V. Twelves, David U. Furrer, William E. Alford
  • Patent number: 10265763
    Abstract: A method for casting comprising: providing a seed, the seed characterized by: an arcuate form and a crystalline orientation progressively varying along an arc of the form; providing molten material; and cooling and solidifying the molten material so that a crystalline structure of the seed propagates into the solidifying material.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 23, 2019
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Paul D. Genereux, Alan D. Cetel, John J. Marcin, Jr., Steven J. Bullied, Mario P. Bochiechio, Kevin W. Schlichting, Bradford A. Cowles, Carl R. Verner, David U. Furrer, Venkatarama K. Seetharaman
  • Publication number: 20190039128
    Abstract: A method for casting comprising: providing a seed, the seed characterized by: an arcuate form and a crystalline orientation progressively varying along an arc of the form; providing molten material; and cooling and solidifying the molten material so that a crystalline structure of the seed propagates into the solidifying material.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Applicant: United Technologies Corporation
    Inventors: Dilip M. Shah, Paul D. Genereux, Alan D. Cetel, John J. Marcin, JR., Steven J. Bullied, Mario P. Bochiechio, Kevin W. Schlichting, Bradford A. Cowles, Carl R. Verner, David U. Furrer, Venkatarama K. Seetharaman
  • Publication number: 20180231478
    Abstract: Aspects of the disclosure are directed to an analysis of a material of a component. A radiation source is activated to transmit radiation to the component. A beam pattern is obtained based on the component interfering with the radiation. The beam pattern is compared to a reference beam pattern. An anomaly is detected to exist in the material when the comparison indicates a deviation between the beam pattern and the reference beam pattern.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 16, 2018
    Inventors: Iuliana Cernatescu, David U. Furrer, Venkatarama K. Seetharaman
  • Patent number: 9976971
    Abstract: An x-ray diffraction system includes an x-ray source having a first interchangeable x-ray generating component, a second interchangeable x-ray generating component, an actuator and a controller operatively connected to the actuator. The first and second interchangeable x-ray generating components are interchangeable with one another. The actuator is operatively connected to the first and second interchangeable x-ray generating components.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: May 22, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Iuliana Cernatescu, David U. Furrer
  • Patent number: 9939393
    Abstract: Aspects of the disclosure are directed to an analysis of a material of a component. A radiation source is activated to transmit radiation to the component. A beam pattern is obtained based on the component interfering with the radiation. The beam pattern is compared to a reference beam pattern. An anomaly is detected to exist in the material when the comparison indicates a deviation between the beam pattern and the reference beam pattern.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: April 10, 2018
    Assignee: United Technologies Corporation
    Inventors: Iuliana Cernatescu, David U. Furrer, Venkatarama K. Seetharaman
  • Publication number: 20170089845
    Abstract: Aspects of the disclosure are directed to an analysis of a material of a component. A radiation source is activated to transmit radiation to the component. A beam pattern is obtained based on the component interfering with the radiation. The beam pattern is compared to a reference beam pattern. An anomaly is detected to exist in the material when the comparison indicates a deviation between the beam pattern and the reference beam pattern.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 30, 2017
    Inventors: Iuliana Cernatescu, David U. Furrer, Venkatarama K. Seetharaman
  • Publication number: 20160031006
    Abstract: A method for casting comprising: providing a seed, the seed characterized by: an arcuate form and a crystalline orientation progressively varying along an arc of the form; providing molten material; and cooling and solidifying the molten material so that a crystalline structure of the seed propagates into the solidifying material.
    Type: Application
    Filed: June 5, 2015
    Publication date: February 4, 2016
    Applicant: United Technologies Corporation
    Inventors: Dilip M. Shah, Paul D. Genereux, Alan D. Cetel, John J. Marcin, JR., Steven J. Bullied, Mario P. Bochiechio, Kevin W. Schlichting, Bradford A. Cowles, Carl R. Verner, David U. Furrer, Venkatarama K. Seetharaman
  • Publication number: 20150253262
    Abstract: An x-ray diffraction system includes an x-ray source having a first interchangeable x-ray generating component, a second interchangeable x-ray generating component, an actuator and a controller operatively connected to the actuator. The first and second interchangeable x-ray generating components are interchangeable with one another. The actuator is operatively connected to the first and second interchangeable x-ray generating components. A method for non-destructive x-ray diffraction includes emitting a first x-ray beam from an x-ray source with a first x-ray generating component based on a first desired depth to measure a crystallographic signature of a sample at the first desired depth, interchanging the first x-ray generating component with a second x-ray generating component to form a modified x-ray source, and emitting a second x-ray beam from the modified x-ray source based on a second desired depth, to non-destructively measure a crystallographic signature of the sample at the second desired depth.
    Type: Application
    Filed: March 5, 2015
    Publication date: September 10, 2015
    Inventors: Iuliana Cernatescu, David U. Furrer
  • Patent number: 8721812
    Abstract: A heat treatment technique may include heating an alloy component to a temperature above a transition temperature of the alloy or heating an alloy component to a temperature below the transition temperature of the alloy. The heat treatment technique further may include cooling a first portion of the alloy component at a first cooling rate, and cooling a second portion of the alloy component at a second cooling rate different than the first rate. The first cooling rate may result in formation of a plurality of first precipitate phase domains comprising a first average size in the first portion, and the second cooling rate may result in formation of a plurality of second precipitate phase domains comprising a second average size in the second portion. The average size of the first precipitate phase domains may be different than the average size of the second precipitate phase domains.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: May 13, 2014
    Assignee: Rolls-Royce Corporation
    Inventors: David U. Furrer, Randolph C. Helmink
  • Publication number: 20120006452
    Abstract: A method (40) of improving the mechanical properties of a component, for example a gas turbine engine turbine disc, (24) comprises isothermally forging (42) a preform to produce a shaped preform with a predetermined shape at a first predetermined temperature, solution heat treating (44) the shaped preform, quenching (46) the shaped preform, forging (48) the shaped preform at a second predetermined temperature to impart a predetermined residual strain in the shaped preform, ageing (50) the shaped preform and finally machining (52) the shaped preform to a finished shape. The second predetermined temperature is less than the first predetermined temperature.
    Type: Application
    Filed: June 16, 2011
    Publication date: January 12, 2012
    Applicant: ROLLS-ROYCE PLC
    Inventors: Robert J. MITCHELL, David U. FURRER, Mark C. HARDY
  • Patent number: 8083872
    Abstract: A method of heat treating a superalloy component includes solution heat treating the component at a temperature below the gamma prime solvus temperature to produce a fine grain structure. Insulation is placed over a first area to form an insulated assembly that is placed in a furnace at a temperature below the solvus temperature and maintained at that temperature for a predetermined time to achieve a uniform temperature. The temperature is increased at a predetermined rate to a temperature above the solvus temperature to maintain a fine grain structure in a first region, produce a coarse grain structure in a second region and produce a transitional structure in a third region between the first and second regions. The insulated assembly is removed from the furnace when the second region has been above the solvus temperature for a predetermined time and/or the first region has reached a predetermined temperature.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: December 27, 2011
    Assignee: Rolls-Royce PLC
    Inventors: Robert J Mitchell, David U Furrer, Joseph A Lemsky, Mark C Hardy
  • Publication number: 20110198001
    Abstract: A method of heat treating a superalloy component includes solution heat treating the component at a temperature below the gamma prime solvus temperature to produce a fine grain structure. Insulation is placed over a first area to form an insulated assembly that is placed in a furnace at a temperature below the solvus temperature and maintained at that temperature for a predetermined time to achieve a uniform temperature. The temperature is increased at a predetermined rate to a temperature above the solvus temperature to maintain a fine grain structure in a first region, produce a coarse grain structure in a second region and produce a transitional structure in a third region between the first and second regions. The insulated assembly is removed from the furnace when the second region has been above the solvus temperature for a predetermined time and/or the first region has reached a predetermined temperature.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 18, 2011
    Applicant: ROLLS-ROYCE PLC
    Inventors: Robert J. MITCHELL, David U. FURRER, Joseph A. LEMSKY, Mark C. HARDY
  • Publication number: 20100252151
    Abstract: A heat treatment technique may include heating an alloy component to a temperature above a transition temperature of the alloy or heating an alloy component to a temperature below the transition temperature of the alloy. The heat treatment technique further may include cooling a first portion of the alloy component at a first cooling rate, and cooling a second portion of the alloy component at a second cooling rate different than the first rate. The first cooling rate may result in formation of a plurality of first precipitate phase domains comprising a first average size in the first portion, and the second cooling rate may result in formation of a plurality of second precipitate phase domains comprising a second average size in the second portion. The average size of the first precipitate phase domains may be different than the average size of the second precipitate phase domains.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 7, 2010
    Applicant: Rolls-Royce Corp.
    Inventors: David U. Furrer, Randolph C. Helmink
  • Publication number: 20090071580
    Abstract: A method of heat treating a superalloy component comprises solution heat treating the component at a temperature below the gamma prime solvus temperature to produce a fine grain structure in the component. Insulation is placed over a first area of the component to form an insulated assembly. The insulated assembly is placed in a furnace at a temperature below the solvus temperature and maintained at that temperature for a predetermined time to achieve a uniform temperature in the component. The temperature is increased at a predetermined rate to a temperature above the solvus temperature to maintain a fine grain structure in a first region, to produce a coarse grain structure in a second region and to produce a transitional structure in a third region between the first and second regions of the component.
    Type: Application
    Filed: June 10, 2008
    Publication date: March 19, 2009
    Applicant: ROLLS-ROYCE PLC
    Inventors: Robert J. Mitchell, David U. Furrer, Joseph A. Lemsky, Mark C. Hardy
  • Patent number: 5115655
    Abstract: A method for preparing rings having an integral stiffening geometric pattern on its outer surface is disclosed. The method employs a variation of the drum rolling process, but it incorporates unique tooling for providing the pattern, preferably comprising a plurality of segments which fit together to define a ring, the inner surface of which presents the desired pattern toward the center of the ring. A unique drum arrangement includes inner and outer components for locking the segments in place and for providing the structural integrity required for the final drum rolling operation. A cylinder, for example an aluminum or aluminum alloy cylinder, is placed in the drum, the cylinder being preformed and presized to fit concentrically within the segment defining ring. Following heating of the assembly to forming temperature, the cylinder is radially expanded using a sizing tool, and the assembly is then placed over a mandrel in preparation for drum rolling.
    Type: Grant
    Filed: February 1, 1991
    Date of Patent: May 26, 1992
    Assignee: Ladish Co., Inc.
    Inventors: James R. Martin, James P. Kuchma, David U. Furrer