Patents by Inventor David V. Campbell

David V. Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8907439
    Abstract: A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 9, 2014
    Assignee: Sandia Corporation
    Inventors: Randolph R. Kay, David V. Campbell, Subhash L. Shinde, Jeffrey L. Rienstra, Darwin K. Serkland, Michael L. Holmes, Seethambal S. Mani, Joy M. Barker, Dahwey Chu, Thomas Gurrieri
  • Patent number: 8681248
    Abstract: An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: March 25, 2014
    Assignee: Sandia Corporation
    Inventors: James E. Levy, David V. Campbell, Michael L. Holmes, Robert Lovejoy, Kenneth Wojciechowski, Randolph R. Kay, William S. Cavanaugh, Thomas M. Gurrieri
  • Patent number: 6301965
    Abstract: A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (&Sgr;&Dgr;) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an “idle” state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: October 16, 2001
    Assignee: Sandia Corporation
    Inventors: Dahlon D. Chu, Donald C. Thelen, Jr., David V. Campbell
  • Patent number: 5625288
    Abstract: Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: April 29, 1997
    Assignee: Sandia Corporation
    Inventors: Eric S. Snyder, David V. Campbell