Patents by Inventor David Vaclav Horak

David Vaclav Horak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7951660
    Abstract: A method for fabricating a metal-oxide-semiconductor device structure. The method includes introducing a dopant species concurrently into a semiconductor active layer that overlies an insulating layer and a gate electrode overlying the semiconductor active layer by ion implantation. The thickness of the semiconductor active layer, the thickness of the gate electrode, and the kinetic energy of the dopant species are chosen such that the projected range of the dopant species in the semiconductor active layer and insulating layer lies within the insulating layer and a projected range of the dopant species in the gate electrode lies within the gate electrode. As a result, the semiconductor active layer and the gate electrode may be doped simultaneously during a single ion implantation and without the necessity of an additional implant mask.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: May 31, 2011
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Larry Alan Nesbit
  • Patent number: 7923202
    Abstract: A structure and a method for forming the same. The method includes providing a structure which includes (a) a to-be-patterned layer, (b) a photoresist layer on top of the to-be-patterned layer wherein the photoresist layer includes a first opening, and (c) a cap region on side walls of the first opening. A first top surface of the to-be-patterned layer is exposed to a surrounding ambient through the first opening. The method further includes performing a first lithography process resulting in a second opening in the photoresist layer. The second opening is different from the first opening. A second top surface of the to-be-patterned layer is exposed to a surrounding ambient through the second opening.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7898045
    Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to the nanotubes.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Leah Marie Pfeifer Pastel
  • Patent number: 7851064
    Abstract: Methods for synthesizing carbon nanotubes and structures formed thereby, includes forming carbon nanotubes on a plurality of synthesis sites supported by a first substrate, interrupting nanotube synthesis, mounting a free end of each carbon nanotube to a second substrate, and removing the first substrate. Each carbon nanotube is capped by one of the synthesis sites, to which growth reactants have ready access.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7829883
    Abstract: Carbon nanotube field effect transistors, arrays of carbon nanotube field effect transistors, device structures, and arrays of device structures. A stacked device structure includes a gate electrode layer and catalyst pads each coupled electrically with a source/drain contact. The gate electrode layer is divided into multiple gate electrodes and at least one semiconducting carbon nanotube is synthesized by a chemical vapor deposition process on each of the catalyst pads. The gate electrode has a sidewall covered by a gate dielectric and at least one semiconducting carbon nanotube adjacent to the sidewall of the gate electrode. Source/drain contacts are electrically coupled with opposite ends of the semiconducting carbon nanotube to complete the device structure. Multiple device structures may be configured either as a memory circuit or as a logic circuit.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: November 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Publication number: 20100273298
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of elongated parallel catalyst strips on a horizontal surface, and growing carbon nanotubes from the catalyst in the presence of a directional flow of reactant gases.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell
  • Patent number: 7807335
    Abstract: A method of forming an image in a photoresist layer. The method includes, providing a substrate; forming the photoresist layer over the substrate; forming a contamination gettering topcoat layer over the photoresist layer, the contamination gettering topcoat layer including one or more polymers and one or more cation complexing agents; exposing the photoresist layer to actinic radiation through a photomask having opaque and clear regions, the opaque regions blocking the actinic radiation and the clear regions being transparent to the actinic radiation, the actinic radiation changing the chemical composition of regions of the photoresist layer exposed to the radiation forming exposed and unexposed regions in the photoresist layer; and removing either the exposed regions of the photoresist layer or the unexposed regions of the photoresist layer. The contamination gettering topcoat layer includes one or more polymers, one or more cation complexing agents and a casting solvent.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: October 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Daniel A. Corliss, Dario Gil, Dario Leonardo Goldfarb, Steven John Holmes, David Vaclav Horak, Kurt Rudolf Kimmel, Karen Elizabeth Petrillo, Dmitriy Shneyder
  • Patent number: 7791145
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises a shaped-modified isolation region that is formed in a trench generally between two doped wells of the substrate in which the bulk CMOS devices are fabricated. The shaped-modified isolation region may comprise a widened dielectric-filled portion of the trench, which may optionally include a nearby damage region, or a narrowed dielectric-filled portion of the trench that partitions a damage region between the two doped wells. Latch-up may also be suppressed by providing a lattice-mismatched layer between the trench base and the dielectric filler in the trench.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Robert J. Gauthier, Jr., David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7786583
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H Mitchell
  • Publication number: 20100176512
    Abstract: An improved semiconductor structure consists of interconnects in an upper interconnect level connected to interconnects in a lower interconnect level through use of a conductive protrusion located at the bottom of a via opening in an upper interconnect level, the conductive protrusion extends upward from bottom of the via opening and into the via opening. The improved interconnect structure with the conductive protrusion between the upper and lower interconnects enhances overall interconnect reliability.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, David Vaclav Horak, Takeshi Nogami, Shom Ponoth
  • Patent number: 7750406
    Abstract: Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7737504
    Abstract: A well isolation trenches for a CMOS device and the method for forming the same. The CMOS device includes (a) a semiconductor substrate, (b) a P well and an N well in the semiconductor substrate, (c) a well isolation region sandwiched between and in direct physical contact with the P well and the N well. The P well comprises a first shallow trench isolation (STI) region, and the N well comprises a second STI region. A bottom surface of the well isolation region is at a lower level than bottom surfaces of the first and second STI regions. When going from top to bottom of the well isolation region, an area of a horizontal cross section of the well isolation region is an essentially continuous function.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7727848
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7699996
    Abstract: A method for simultaneously forming multiple line-widths, one of which is less than that achievable employing conventional lithographic techniques. The method includes providing a structure which includes a memory layer and a sidewall image transfer (SIT) layer on top of the memory layer. Then, the SIT layer is patterned resulting in a SIT region. Then, the SIT region is used as a blocking mask during directional etching of the memory layer resulting in a first memory region. Then, a side wall of the SIT region is retreated a retreating distance D in a reference direction resulting in a SIT portion. Said patterning comprises a lithographic process. The retreating distance D is less than a critical dimension CD associated with the lithographic process. The SIT region includes a first dimension W2 and a second dimension W3 in the reference direction, wherein CD<W2<2D<W3.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, John G. Gaudiello, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7691720
    Abstract: Vertical device structures incorporating at least one nanotube and methods for fabricating such device structures by chemical vapor deposition. Each nanotube is grown by chemical vapor deposition catalyzed by a catalyst pad and encased in a coating of a dielectric material. Vertical field effect transistors may be fashioned by forming a gate electrode about the encased nanotubes such that the encased nanotubes extend vertically through the thickness of the gate electrode. Capacitors may be fashioned in which the encased nanotubes and the corresponding catalyst pad bearing the encased nanotubes forms one capacitor plate.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7674674
    Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: March 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H. Mitchell
  • Patent number: 7668004
    Abstract: Non-volatile and radiation-hard switching and memory devices using vertical nano-tubes and reversibly held in state by van der Waals' forces and methods of fabricating the devices. Means for sensing the state of the devices include measuring capacitance, and tunneling and field emission currents.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7655985
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7651902
    Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7648869
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The structure comprises a first doped well formed in a substrate of semiconductor material, a second doped well formed in the substrate proximate to the first doped well, and a deep trench defined in the substrate. The deep trench includes sidewalls positioned between the first and second doped wells. A buried conductive region is defined in the semiconductor material bordering the base and the sidewalls of the deep trench. The buried conductive region intersects the first and second doped wells. The buried conductive region has a higher dopant concentration than the first and second doped wells. The buried conductive region may be formed by solid phase diffusion from a mobile dopant-containing material placed in the deep trench. After the buried conductive region is formed, the mobile dopant-containing material may optionally remain in the deep trench.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: January 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Shunhua Thomas Chang, Toshiharu Furukawa, Robert J. Gauthier, Jr., David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti