Patents by Inventor David Vader

David Vader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280154
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 7, 2023
    Applicant: NINEPOINT MEDICAL, INC.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Patent number: 11686572
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: June 27, 2023
    Assignee: Ninepoint Medical, Inc.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Publication number: 20220192517
    Abstract: A method and system for detecting plaque and vessel constriction by processing intracoronary optical coherence tomography (IVOCT) pullback data performed by software executed on a computer. One example method includes inputting IVOCT pullback data from an imaging device, performing full semantic segmentation of the every image of the IVOCT pullback data with a frame-based segmentation module, generating a cross-sectional frame-based image of the every image of the segmented IVOCT pullback data with a cross-sectional display, and determining the presence of plaque and vessel constriction with an automated analysis application analyzing the cross-sectional frame-based images.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: David A. Vader, Ronny SHALEV, John LONG
  • Publication number: 20220042784
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: October 12, 2021
    Publication date: February 10, 2022
    Applicant: NINEPOINT MEDICAL, INC.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Patent number: 11175125
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 16, 2021
    Assignee: NINEPOINT MEDICAL, INC.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Publication number: 20200103216
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Inventors: Eman NAMATI, Muhammad AL-QAISI, Matthew A. SINCLAIR, Benedikt GRAF, David VADER
  • Patent number: 10495442
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 3, 2019
    Assignee: NinePoint Medical, Inc.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Patent number: 10184782
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 22, 2019
    Assignee: NINEPOINT MEDICAL, INC.
    Inventors: Eman Namati, Muhammad Al-Qaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Publication number: 20180372479
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Eman NAMATI, Muhammad AL-QAISI, Matthew A. SINCLAIR, Benedikt GRAF, David VADER
  • Patent number: 9668638
    Abstract: A system for registering images is provided. The system includes a first imaging device having an imager positioned at a distal end thereof. The first image device is configured to produce a first image of a body cavity. The system includes an imaging system having a second imaging device having an imager positioned at a distal end thereof and configured to be positioned approximate to said imager of said first imaging device within said body cavity and configured to produce a second image. An elongated member having an outer surface is molded to include imaging markers such that said imaging markers are embedded within the outer surface. At least one of the image markers is configured to produce registration information in the first image and the second image.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: June 6, 2017
    Assignee: Ninepoint Medical Inc.
    Inventors: Shekhar Nimkar, David Vader, Jim Houskeeper
  • Publication number: 20140340689
    Abstract: The present disclosure provides an OCT imaging system to reduce or eliminate frequency-domain aliasing artifacts. The frequency is shifted using a carrier frequency to define a sampling range substantially centered on the carrier frequency. An image of the sample is generated from a displayed imaging range that consists of a subset of the frequencies within the sampling range. Furthermore, the system may be configured to determine the carrier frequency such that a Nyquist frequency corresponding to the shifted frequency is extended beyond either an upper or a lower bound of an OCT quality envelope corresponding to the first portion of light. Additionally, the carrier frequency may be determined such that a lower bound of the OCT quality envelope is greater or less than a zero-frequency DC limit.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Inventors: Eman Namati, Muhammad Al-Kaisi, Matthew A. Sinclair, Benedikt Graf, David Vader
  • Publication number: 20140309527
    Abstract: Multiple aperture, multiple modal optical systems and methods include at least one optical component positioned at a first position about a longitudinal axis; and at least two light sources connectable to the at least one optical component, wherein the multiple modal optical system is configured to transmit light from the at least two light sources in at least one direction transverse to the longitudinal axis and receive reflected light, and wherein the at least one optical component is configured to rotate about the longitudinal axis and translate along the longitudinal axis when connected to the at least two light sources.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: NinePoint Medical, Inc.
    Inventors: Eman Namati, Matthew A. Sinclair, David Vader, Ben Graf
  • Publication number: 20140228636
    Abstract: A system for registering images is provided. The system includes a first imaging device having an imager positioned at a distal end thereof. The first image device is configured to produce a first image of a body cavity. The system includes an imaging system having a second imaging device having an imager positioned at a distal end thereof and configured to be positioned approximate to said imager of said first imaging device within said body cavity and configured to produce a second image. An elongated member having an outer surface is molded to include imaging markers such that said imaging markers are embedded within the outer surface. At least one of the image markers is configured to produce registration information in the first image and the second image.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 14, 2014
    Applicant: NinePoint Medical, Inc.
    Inventors: Shekhar Nimkar, David Vader, Jim Houskeeper