Patents by Inventor David W. Cannon

David W. Cannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094357
    Abstract: In one embodiment, a lidar system includes a light source configured to emit local-oscillator (LO) light and pulses of light, the emitted pulses of light including a first emitted pulse of light, where an optical frequency of the first emitted pulse of light is offset from an optical frequency of the LO light by a first frequency offset. The lidar system further includes a receiver configured to detect the LO light and a first received pulse of light, the first received pulse of light including light from the first emitted pulse of light scattered by a target located a distance from the lidar system. The receiver includes a detector, where: the LO light and the first received pulse of light are coherently mixed together at the detector, and the detector is configured to produce a photocurrent signal corresponding to the coherent mixing.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Philip W. Smith, David H. Minasi, Joseph G. LaChapelle, Roger S. Cannon, Robert D. Still, Elias Soto, Zachary Ronald Dylan Thomas Bush
  • Patent number: 6898978
    Abstract: An apparatus for making pulsed acoustic measurements to determine particle size in a sample (1) such as a colloid. The apparatus includes two electrodes (2) between which an electric voltage is applied to the sample. The voltage is applied in short pulses. The applied voltage generates an acoustic signal, such as a sound wave (5), in the sample which is detected with a transducer (3) after the wave (5) has passed through a delay element (4). The delay element (4) is used to introduce enough of a time delay between the application of the voltage pulse and sound wave (5) reaching the transducer so that the received wave's signal can be isolated from any signal generated in the transducer (3) by the applied voltage. The delay element (4) and the transducer (3) are arranged into a geometry, or, alternatively, the delay element (4) is shaped, so that any reflections of the sound wave (5) from the sidewalls of the delay element (4) are deflected away from the transducer (3).
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: May 31, 2005
    Assignee: Colloidal Dynamics Pty Ltd.
    Inventors: Richard O'Brien, David W. Cannon
  • Publication number: 20040112137
    Abstract: An apparatus for making pulsed acoustic measurements to determine particle size in a sample (1) such as a colloid. The apparatus includes two elctrodes (2) between which an electric voltage is applied to the sample. The voltage is applied in short pulses. The applied voltage generates an acoustic signal, such as a sound wave (5), in the sample which is detected with a transducer (3) after the wave (5) has passed through a delay element (4). The delay element (4) is used to introduce enough of a time delay between the application of the voltage pulse and sound wave (5) reaching the transducer so that the received wave's signal can be isolated from any signal generated in the transducer (3) by the applied voltage. The delay element (4) and the transducer (3) are arranged into a geometry, or, alternatively, the delay element (4) is shaped, so that any reflections of the sound wave (5) from the sidewalls of the delay element (4) are deflected away from the transducer (3).
    Type: Application
    Filed: January 20, 2004
    Publication date: June 17, 2004
    Inventors: Richard O'Brien, David W. Cannon
  • Patent number: 5245290
    Abstract: An apparatus for determining the particle charge and size distribution of particles in suspensions of arbitrary concentration is provided. The apparatus includes a cell for application of an unsteady electric field or an unsteady mechanical force across the suspension of at least two different frequencies for accelerating the particles. The resulting acoustic wave generated by application of the electric field applied to the electrodes, or the electrical response and the acoustic pressure at the electrodes generated by application of the mechanical force is measured. Transducers convert the mechanical forces to electrical forces.
    Type: Grant
    Filed: August 23, 1991
    Date of Patent: September 14, 1993
    Assignees: Matec Applied Sciences, Inc., Colloidal Dynamics
    Inventors: David W. Cannon, Richard W. O'Brien
  • Patent number: 4497208
    Abstract: This invention is concerned with a method and apparatus for measuring the electro-kinetic properties of a liquid which may be a mixture such as a slurry of particles, or a dispersion of droplets. Electrodes are placed in the liquid and an apparatus is provided for applying an alternating electrical potential to these electrodes. The electric field from this alternating potential acts upon the charged elements in the liquid, resulting in the generation of sound at the frequency of the applied electrical potential. By placing a conventional acoustic transducer in a spaced relationship to the electrodes, the acoustic signal is detected and measured. The amplitude of the acoustical signal will be a function of the electro-kinetic properties of the particles or emulsion droplets in the liquid. In its preferred form, the electrodes that are placed in the liquid have a spacial separation of one-half wave length, or odd integer multiples of half wave length of the sound which they generate.
    Type: Grant
    Filed: June 23, 1983
    Date of Patent: February 5, 1985
    Assignee: Matec, Inc.
    Inventors: Tonis Oja, Gary L. Petersen, David W. Cannon