Patents by Inventor David W. Corman
David W. Corman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11133603Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.Type: GrantFiled: November 16, 2020Date of Patent: September 28, 2021Assignee: Anokiwave, Inc.Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
-
Publication number: 20210296784Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.Type: ApplicationFiled: April 9, 2021Publication date: September 23, 2021Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
-
Patent number: 11081792Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.Type: GrantFiled: March 7, 2019Date of Patent: August 3, 2021Assignee: Anokiwave, Inc.Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon
-
Publication number: 20210235282Abstract: A beamforming integrated circuit system is configured to optimize performance. Among other things, the system may run at a lower power than conventional integrated circuits, selectively disable branches to control certain system functions, and/or selectively position ground pads around receiving pads to enhance isolation. The system also may use a beamforming integrated circuit as a distribution circuit for a number of similar or like beamforming integrated circuits.Type: ApplicationFiled: December 24, 2018Publication date: July 29, 2021Applicant: ANOKIWAVE, INC.Inventors: Pavel Brechko, David W. Corman, Vipul Jain, Shamsun Nahar, Jason Durbin, Nitin Jain
-
Patent number: 11063336Abstract: A conditioning integrated circuit (CDIC) chip can be used to aggregate signals to/from a number of beam forming integrated circuit (BFIC) chips, and signals to/from a number of CDIC chips can be aggregated by an interface integrated circuit (IFIC) chip. The CDIC chip includes temperature compensation circuitry to adjust the gain of the transmit and receive signals as a function of temperature based on inputs from a temperature sensor. The CDIC may include a plurality of beam forming channels each having a transmit circuit and a receive circuit, a common port coupled to the beam forming channels for selectively providing a common transmit signal to the beam forming channels and receiving a common receive signal from the beam forming channels, and a temperature compensation circuit configured to provide variable attenuation to the common transmit signal and the common receive signal based on a temperature sense signal.Type: GrantFiled: April 4, 2019Date of Patent: July 13, 2021Assignee: Anokiwave, Inc.Inventors: Kristian N. Madsen, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain, Jonathan P. Comeau, Shmuel Ravid
-
Patent number: 11038285Abstract: In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.Type: GrantFiled: September 4, 2020Date of Patent: June 15, 2021Assignee: ViaSat, Inc.Inventors: David W. Corman, Rob Zienkewicz, David R. Saunders
-
Patent number: 11011853Abstract: A phased array includes a laminar substrate having both 1) a plurality of elements forming a patch phased array, and 2) a plurality of integrated circuits. Each integrated circuit is configured to control receipt and transmission of signals by the plurality of elements in the patch phased array. The integrated circuits also are configured to operate the phased array at one or more satellite frequencies—to transmit signals to and/or receive signals from a satellite. Each integrated circuit physically couples with one corresponding element so that incoming signals are received by the corresponding element in a first polarization, and outgoing signals are transmitted by the corresponding element in a second polarization. The phased array isolates the transmit signals from the receive signals by orienting the first and second polarizations differently.Type: GrantFiled: September 16, 2016Date of Patent: May 18, 2021Assignee: Anokiwave, Inc.Inventors: David W. Corman, Vipul Jain, Timothy Carey, Nitin Jain
-
Patent number: 10998640Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.Type: GrantFiled: May 15, 2019Date of Patent: May 4, 2021Assignee: Anokiwave, Inc.Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
-
Publication number: 20210075125Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.Type: ApplicationFiled: November 16, 2020Publication date: March 11, 2021Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
-
Publication number: 20200403323Abstract: In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.Type: ApplicationFiled: September 4, 2020Publication date: December 24, 2020Inventors: David W. Corman, Rob Zienkewicz, David R. Saunders
-
Patent number: 10862222Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be preprogrammed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.Type: GrantFiled: June 10, 2019Date of Patent: December 8, 2020Assignee: Anokiwave, Inc.Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. Mcmorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
-
Publication number: 20200350677Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.Type: ApplicationFiled: March 7, 2019Publication date: November 5, 2020Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon
-
Patent number: 10826195Abstract: Illustrative embodiments significantly improve RF isolation in a packaged integrated circuit by separating the pins/pads associated with multiple RF channels from one another and also from pins/pads associated with digital circuits. Specifically, in certain exemplary embodiments, the integrated circuit is configured with the pins/pad for the digital circuits on a first edge of the chip, the pins/pads for common RF signals on a second edge of the chip opposite the first edge, and the pins/pads for the individual RF channels on third and fourth edges of the chip. The pins/pads associated with each RF channel may include multiple pins/pads (an “RF group”) and may have a central RF pin/pad with a ground pin/pad on each side of the central RF pin/pad. One or more ground pins/pads may be placed between adjacent RF groups on a given edge of the chip.Type: GrantFiled: March 28, 2018Date of Patent: November 3, 2020Assignee: ANOKIWAVE, INC.Inventors: Kristian N. Madsen, Vipul Jain, Amir Esmaili, Chad Cookinham, Noyan Kinayman, Shamsun Nahar, David W. Corman, Nitin Jain
-
Patent number: 10797406Abstract: In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.Type: GrantFiled: November 5, 2019Date of Patent: October 6, 2020Assignee: VIASAT, INC.Inventors: David W. Corman, Rob Zienkewicz, David R. Saunders
-
Patent number: 10742288Abstract: A beamforming integrated circuit has a single channel with a transmit chain and a receive chain. The transmit chain is configured to transmit an output signal and, in a corresponding manner, the receive chain is configured to receive an input signal. The integrated circuit also has separate horizontal and vertical polarity ports, and a double pole, double throw switch operably coupled between the chains and the ports. The double pole, double throw switch is configured to switch between operation in a first mode and a second mode.Type: GrantFiled: December 14, 2018Date of Patent: August 11, 2020Assignee: ANOKIWAVE, INC.Inventors: Robert J. McMorrow, Vipul Jain, Wade C. Allen, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Nitin Jain
-
Publication number: 20200099142Abstract: In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.Type: ApplicationFiled: November 5, 2019Publication date: March 26, 2020Inventors: David W. Corman, Rob Zienkewicz, David R. Saunders
-
Patent number: 10516219Abstract: In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.Type: GrantFiled: February 25, 2019Date of Patent: December 24, 2019Assignee: VIASAT, INC.Inventors: David W. Corman, Rob Zienkewicz, David Saunders
-
Publication number: 20190356057Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.Type: ApplicationFiled: May 15, 2019Publication date: November 21, 2019Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
-
Publication number: 20190334253Abstract: In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.Type: ApplicationFiled: February 25, 2019Publication date: October 31, 2019Inventors: David W. Corman, Rob Zienkewicz, David Saunders
-
Publication number: 20190312330Abstract: A conditioning integrated circuit (CDIC) chip can be used to aggregate signals to/from a number of beam forming integrated circuit (BFIC) chips, and signals to/from a number of CDIC chips can be aggregated by an interface integrated circuit (IFIC) chip. The CDIC chip includes temperature compensation circuitry to adjust the gain of the transmit and receive signals as a function of temperature based on inputs from a temperature sensor. The CDIC may include a plurality of beam forming channels each having a transmit circuit and a receive circuit, a common port coupled to the beam forming channels for selectively providing a common transmit signal to the beam forming channels and receiving a common receive signal from the beam forming channels, and a temperature compensation circuit configured to provide variable attenuation to the common transmit signal and the common receive signal based on a temperature sense signal.Type: ApplicationFiled: April 4, 2019Publication date: October 10, 2019Inventors: Kristian N. Madsen, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain, Jonathan P. Comeau, Shmuel Ravid