Patents by Inventor David W. Mosley

David W. Mosley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110120343
    Abstract: A Group 3a ink, comprising, as initial components: a polyamine solvent; a Group 3a material/organic complex; and, a reducing agent; wherein the molar concentration of the reducing agent exceeds the molar concentration of the Group 3a material/organic complex; wherein the Group 3a ink is a stable dispersion and wherein the Group 3a ink is hydrazine and hydrazinium free. Also provided are methods of preparing the Group 3a ink and of using the Group 3a ink to deposit a Group 3a material on a substrate for use in a variety of semiconductor applications, such as metallization of silicon devices in VLSI technology, the growth of semiconducting III-V alloys, thin film transistors (TFTs), light emitting diodes (LEDs); and infrared detectors.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Inventors: Kevin Calzia, David W. Mosley
  • Publication number: 20110124055
    Abstract: In a method for synthesizing a long nucleic acid molecule, a first immobilized nucleic acid has a first 5? region and a first 3? region and a second immobilized nucleic acid has a second 5? region and a second 3? region, wherein the second 3? region and the first 5? region have identical nucleic acid sequences. The first immobilized nucleic acid is hybridized with an oligonucleotide under conditions promoting hybridization of the oligonucleotide to the first 3? region, extending the hybridized oligonucleotide and producing a first extension product having a 3? region that is complementary to the first 5? region.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 26, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Peter A. Carr, Brian Y. Chow, Joseph M. Jacobson, David W. Mosley, Christopher Emig
  • Patent number: 7932025
    Abstract: This invention generally relates to nucleic acid synthesis, in particular DNA synthesis. More particularly, the invention relates to the production of long nucleic acid molecules with precise user control over sequence content. This invention also relates to the prevention and/or removal of errors within nucleic acid molecules.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: April 26, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter A. Carr, Brian Y. Chow, Joseph M. Jacobson, David W. Mosley, Christopher Emig
  • Publication number: 20110076799
    Abstract: A selenium/Group 1b ink comprising, as initial components: a selenium component comprising selenium, an organic chalcogenide component having a formula selected from RZ—Z?R? and R2—SH, a Group 1b component and a liquid carrier; wherein Z and Z? are each independently selected from sulfur, selenium and tellurium; wherein R is selected from H, C1-20 alkyl group, a C6-20 aryl group, a C1-20 alkylhydroxy group, an arylether group and an alkylether group; wherein R? and R2 are selected from a C1-20 alkyl group, a C6-20 aryl group, a C1-20 alkylhydroxy group, an arylether group and an alkylether group; and wherein the selenium/Group 1b ink is a stable dispersion.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Kevin Calzia, David W. Mosley, Charles R. Szmanda, David L. Thorsen
  • Publication number: 20110076798
    Abstract: A selenium ink comprising, as initial components: a liquid carrier; a selenium component comprising selenium; and, an organic chalcogenide component having a formula selected from RZ—Z?R? and R2—SH, a Group 1b component and a liquid carrier; wherein Z and Z? are each independently selected from sulfur, selenium and tellurium; wherein R is selected from H, C1-20 alkyl group, a C6-20 aryl group, a C1-20 alkylhydroxy group, an arylether group and an alkylether group; wherein R? and R2 are selected from a C1-20 alkyl group, a C6-20 aryl group, a C1-20 alkylhydroxy group, an arylether group and an alkylether group; wherein the selenium ink comprises ?1 wt % selenium; wherein the selenium ink is a stable dispersion and wherein the selenium ink is hydrazine and hydrazinium free.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Kevin Calzia, David W. Mosley, Charles R. Szmanda, David L. Thorsen
  • Patent number: 7879580
    Abstract: This invention generally relates to nucleic acid synthesis, in particular DNA synthesis. More particularly, the invention relates to the production of long nucleic acid molecules with precise user control over sequence content. This invention also relates to the prevention and/or removal of errors within nucleic acid molecules.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: February 1, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter A. Carr, Brian Y. Chow, Joseph M. Jacobson, David W. Mosley, Christopher Emig
  • Publication number: 20090326269
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless a set of two replicating monomers with compatible cross-linking chemistry is employed.
    Type: Application
    Filed: July 19, 2009
    Publication date: December 31, 2009
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Joseph M. Jacobson, David W. Mosley
  • Patent number: 7563482
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless a set of two replicating monomers with compatible cross-linking chemistry is employed.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: July 21, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley
  • Publication number: 20090124780
    Abstract: Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
    Type: Application
    Filed: January 12, 2009
    Publication date: May 14, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley, Kie-Moon Sung
  • Patent number: 7476442
    Abstract: Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: January 13, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley, Kie-Moon Sung
  • Publication number: 20080118644
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless a set of two replicating monomers with compatible cross-linking chemistry is employed.
    Type: Application
    Filed: December 24, 2007
    Publication date: May 22, 2008
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Joseph M. JACOBSON, David W. MOSLEY
  • Patent number: 7311943
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers may be used as templates for the growth of inorganic colloids. A preferred embodiment is a SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. Once the second monolayer has formed, it is polymerized in place and the two monolayers are separated to form a replicate. Both monolayers may then function as templates for monolayer assemblies. A generic self-replicating monomer unit suitable for use in one embodiment comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: December 25, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley
  • Publication number: 20040264263
    Abstract: This invention generally relates to solution-based molecular shuttle devices. More particularly, this invention relates to solution-based molecular switches, molecular assemblies, and molecular memory devices and methods for producing the same. In some embodiments the devices are made from molecular chains constructed from molecular subunits which define binding positions and shuttles that are capable of moving along the chains.
    Type: Application
    Filed: July 17, 2003
    Publication date: December 30, 2004
    Applicant: ASSIGNEE-COMPANY-NAME
    Inventors: Joseph M. Jacobson, David W. Mosley, Brian Chow
  • Publication number: 20040076757
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers may be used as templates for the growth of inorganic colloids. A preferred embodiment is a SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. Once the second monolayer has formed, it is polymerized in place and the two monolayers are separated to form a replicate. Both monolayers may then function as templates for monolayer assemblies. A generic self-replicating monomer unit suitable for use in one embodiment comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry.
    Type: Application
    Filed: July 17, 2003
    Publication date: April 22, 2004
    Inventors: Joseph M. Jacobson, David W. Mosley
  • Publication number: 20040077844
    Abstract: Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
    Type: Application
    Filed: July 17, 2003
    Publication date: April 22, 2004
    Inventors: Joseph M. Jacobson, David W. Mosley, Kie-Moon Sung